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ABSTRACT

The major problem addressed by this research is how to improve an existing real-time
software system’s readability, maintainability, stability and portability using reengineering
techniques. A fundamental portion of the Model-based Mobile robot Language (MML)
was the real-time system chosen as the basis for this study.

The approach taken was to create a new system design. The new design was based on
system specifications obtained by conducting static and dynamic analysis on the existing
system.

The results are that a new core system was implemented using a design thai {fovuscd un
creating independent software sub-systems while encapsulating data. Hardware
dependencies were localized and assembly code minimized. The new system is easier to

understand and modify and is portable to other hardware platforms.
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I. INTRODUCTION

A. PROBLEM STATEMENT

The problem this thesis solves is how to reengineer MML, a real-time control system
for the Yamabico-11 autonomous robot, while improving system stability, maintainability

and portability.

B. BACKGROUND

MML is a real-time system under development for the Yamabico-11 robot. The goal
of the project is to create a robot-independent, high-level language for mobile robot control.
The language contains sets of library functions to handle geometry, motion, sonar, and I/O.
These routines could then be used by developers to program a robot’s movement without
the requirements of low-level motion control understanding.

In the class of motion control functionality, MML originally used a sequence of
configurations to describe a vehicles desired path. A configuration represents the robot’s
current position and orientation in a 2D world. Current research invoives expanding the
language to describe motion control using directed nath segments as well. Each directed
path is defined by a point that lies on the segment, the orientation of the segment in the 2D
world and the seement’s curvature.

The status of the MML system typities that of many software systems in existence
today. Roughly 50 to 80 percent of a software organization’s resources are spent
maintaining existing systems. Many of these systems were developed without complete
specifications or documentation by analysts and programmers who are no longer with the
organization. Analysts and programmers with incomplete system knowledge are then
required to perform the necessary maintenance [Yourdon 93].

As a research system, MML evolved through modifications made from several

graduate students. Many of these changes were unstructured and made use of global




variables. At times, particular functions or sections of code were altered simultaneously by
different developers. The result is an unstable system that is extremely difficult to maintain.

Some organizations are investing resources into software reengineer tcchniques,
hoping to reducc maintenance efforts and costs dedicated to these existing systems. There
are three fundamental approaches to reengineering a system. The first technique, called
restructuring, reorganizes unstructured source code into a medular form. The new form
remains functionally equivalent to the older version. The second method is tr reengineer
the system. The goal of this plan is to replace existing code with newer versions, possibly
written in a higher level language. This is done gradually by the maintenance programmers
each time maintenance is required. Reverse engineering is the third technique. The
objective of this procedure is to reconstruct the design, and/or the specifications from the

existing source code {Yourdon 93].

C. OVERVIEW

This thesis shows a procedure for reengineering an existing real-time system, MML-
10. The first step in this process is to determine the functionality of the existing system.
Chapter two analyzes MML-10’s software system, while chapter three covers the hardware
components of the Yamabico-11 robot. Generating a new design is the second step and is
covered in chapter four. The third step is to implement and test the new design. Chapter five
detai.s Yamabhiro-11’s software development environment. The design implementation
and results are discussed in chapter six. Chapter seven presents the conclusions and future

recommendations.




II. YAM *BICO SOFTWARE SYSTEM ARCHITECTURE

Pricr to reengineering an existing software system, the maintenance programmer must
have a thorough understanding of that system’s logical design. Unless the programmer was
involved with the system’s original implementation, this is only achieved by reviewing the
software’s specifications and/or documentation. For systems lacking complete
specifications and /or documentation, such as MML, it may be necessary to performreverse
engineering techniques to recover this information. Since current CASE technology
focuses on developing new systems, these tools can provide limited support, but not at a
high level [ Yourdon 93].

Two of the most effective methods for reconstructing system specifications and/or
documentation are static and dynamic analysis. The results of these two techniques form a
logical description of the system. This description can then be translated into physical
depictions, such as data flow diagrams or state transition aiagrams [Yourdon 89]. The

context diagram of the current MML system is shown in Figure 1.

Dual Axis
Controller
Wheel Motor
Encoders Control
MML
Control
System
Sonar ~ Interrupt
Returns N\ Signals
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Sonar Sonar npu Senial
Board Boards (2
Control  Output oards (2)

Figure 1: MML System Overview




A. STATIC ANALYSIS OF MML-10

Static analysis is the process of gaining an understanding of a software system through
source code examination. The goal of this phase is to recover enough information to create
a logical picture of the existing system. One important technique involves the tracing of
function and procedure calls. When performing this procedure, it is not desirable to produce
a complete or detailed trace as this only wastes time and resources.

Another important technique involves variable tracing. The emphasis during this
operation should be on tracing parameters passed to functions and procedures, any values

they return and references to global variables.

1. User vs. Kernel

As shown in Figure 2, the MML system is composed of two distinct parts: the

kernel module and a user program. The kernel contains the low level routines required to

Wheel

Encoders
Motor

Control

Inpuy/Output

Sonar MML Commands

Retums

Status Information

Sonar S e -
Control \ Control to
\\ User Program
Input/ Interrupt
Output Signals

Figure 2: MML System

control movement and to perform input/output. The low level details are hidden from
developers through the MML command set. A user program consists of MML command
calls and C constructs to describe one or more motion behaviors. Each command either

requests status information from the kernel or commands a desired behavior [Scott 93].




Each module is downloaded to the robot separately. Robot operation is only
possible after both modules are loaded. Program execution starts with the kernel. The
kernel initializes the sub-systems and then passes control to the user program. The user
program maintains primary control until termination. However, the kemel’s control
processes will interrupt execution for short durations. This design allows a user to quickly

alter the behavior of the robot by simply changing the user program used by the kernel.

2.  Kernel System

Figure 3 is a modified data flow diagram showing the kernel as a collectiun of
control type processes. Each control process, indicated by a dashed circle, is associated
with a distinct hardware generated interrupt. The interrupts are prioritized through the
hardware’s configuration. The current CPU provides eight priority levels. When an
interrupt is generated, the associated control process assumes control of the CPU, provided
it is not interrupting a higher level process. Otherwise, it will wait until all higher priority
interrupts are serviced before taking control. The interrupt level of each process is indicated
by the value within parentheses.

Since motion control is responsible for maneuvering the robot, receives the
highest priority given to the control processes, interrupt level four. It controls movement
by first estimating the robc:’s current odometry configuration through dead reckoning. This
estimate is then used to calculate the necessary linear and rotational velocities. These
calculations are based on the motion required to follow the current path segment. Finally,
these velocities are translated into pulse width modulation commands and sent to the
motors controlling the robot’s wheels. This process, called the motion control cycle, repeats
every 10 milliseconds and requires approximately 2.5 milliseconds to execute
[MacPherson 93].

The input/output process receives the next highest priority at interrupt level

three. It uses interrupt driven input and output to effect information transfers between the




User

Program
Control to User Status
Inf i
Pngfam ormation User
Program
MML
Interrupt from Commands
Serial Board
\ main() /
\ Initialization
\ routines
\
”~ j =~ - =
/ Sonar / Motion
| Process(2) Control
\ / \ Process @) /
/7 7/
~ \ -
N 4
Sonar Motor
Control Control
Sonar Wheel
Returns Global Variables / Encoders
’
1I/O Through Interrupt from
Serial Boards Serial Board

Figure 3: Kernel System




robot and the onboard console device. It also controls the transfer of data between the robot
and a Unix workstation [MacPherson 93].

Interrupt priority level two signals the robot’s sonar process. This process
collects sonar range information used for obstacle avoidance. The process requires 240

microseconds to complete and is repeated every 24 milliseconds [DeClue 93].

3. Motion Control Process

As depicted in Figure 4, the major responsibilities of motion control are

processing MML commands and pathtracking. Each MML command is characterized as

Interrupt
from Serial Whozel
Board Encoders
' Sequential and ‘\
I Immediate \
| Commands \
| \
L -
/ \
Command ! Motion
Processing 1 Control
\ /
\ /
o J
Pulse Width
y Modulation Values

Global Variables

Figure 4: Motion Control Process

either an immediate or sequential command. Both types induce changes to one or more

control parameters. Immediate commands induce the changes at the instant they are called




from within the user program. However, when a sequential command is called from the
user program, it is added to an instruction queue. Each sequential command is then
executed only after the previous sequential command is finished. Immediate command
execution and storage of sequential commands into the instruction queue is independent
from the motion control cycle.

For path tracking, a three step process is executed every motion control cycle.
First, Yamabico updates its current odometry configuration, position and orientation, by
reading hardware registers associated with wheel movement. Next, this information is used
to calculate the robot’s next intended movement using control rules. Early motion
description methods in MML compared the current configuration against a reference
configuration [Kanayama 91]. However, recent research has proven that smoother motion
control is achieved by comparing the current configuration against a reference path
segment [MacPherson 93]. Finally, the intended movement is translated into pulse width
modulation values and sent to the motor control board.

A path segment is either a straight line, circular arc, parabola or cubic spiral.
Yamabico will track a sequence of these path segments added to the instruction queue by
calculating a transition point from one segment to the next. Once the transition point is
reached, the robot will begin following the next path segment.

A secondary task of motion control is data logging. This purpose of this function
is to record control data every motion control cycle. The collected data is used by the

system programmers for debugging.

4. T/O Process

As previously mentioned, the input/output process is responsible for transferring
information between the robot and either the Unix workstation or the console.
Communications between the robot and the Unix workstation are accomplished by polling

a serial port mapped to a specific memory location.




Transferring information with the console is also memory mapped, however this
process is interrupt driven. During output, data is stored in a 1024 character circular buffer.
The interrupt sequence is then initiated by sending a null character directly to the console.
After the character is received by the console, an interrupt causes the next character in the
buffer to be sent. After this character is written to the console, another interrupt is
generated. This process continues until the buffer is empty and a command to terminate the

interrupt cycle is sent to the port. Input is handled in a similar fashion.

5.  Sonar Process
As mentioned earlier, the sonar process is responsible for recording sonar range
returns. This information is made available to user programs for obstacle avoidance. The
returns can also be used for automated cartography by building line segments using a least

squares linear fitting algorithm [DeClue 93]{MacPherson 93].

B. DYNAMIC ANALYSIS OF MML-10

When static analysis provides insufficient insight to a system’s behavior, dynamic
analysis should be used. Dynamic analysis is the process of tracing a system during
execution. Using dynamic analysis, a maintenance programmer can follow the path of
execution, monitor access to a particular memory location or alter the storage values. This
is particularly useful when trying to locate the cause of a system crash [Yourdon 93].

Tracing MML-10 has proven to be very difficult. Two reasons are the system’s low
readability and high degree of coupling. This is the result of using inappropriate modularity
techniques. These and other system characteristics are described below. Another reason is
the difficulty associated with using a debugger due to the timing constraints of a real time

system.

C. SYSTEM CHARACTERISTICS

A by-product of conducting static and dynamic analysis is knowledge of a system’s

software characteristics. Software characteristics are those attributes used to describe the




quality of a system’s design and implementation. The following list of attributes is used to
describe the internal makeup of a system and is directly related to the effort required to

perform system maintenance.

1.  Coupling

When one module references a symbolic address defined outside of that module,
a connection (or interdependency) is created between the module with the reference and the
module with the definition. Coupling describes the types and strength of these connections
between modules. References to internal data elements or data structures is known as
common coupling since code segments are referencing a common data area. Another form
of coupling is control coupling. This exists when control switches such as flags are used
between modules. The purpose of these flags is to change or modify the behavior or actions
of a routine. Low coupling exists when references between modules are limited to
procedure and/or function names.

As coupling increases, a system is more difficult to understand and maintain.
Therefore, it is desirable to reduce coupling by reducing the references to another module’s
internal elements. One method for reducing common coupling is to bring the externally
referenced elements inside the module. However, this only works if the elements are not
referenced by other sections of code. Control coupling can be reduced by splitting the
routines effected by the flags into seperate procedures or functions. Then the calling routine

would make seperate calls to the new routines [Stevens 74].

2.  Cohesion
When more than one code segment references the same element, these segments
are related. Cohesion measures the strength of relationships between code segments within
the same module. It is desirable that modules exhibit strong cohesion. For that reason,
related segments should be collected in the same module that contains the referenced

element [Stevens 74].
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3. Modifiability
A system is modifiable if changes can be made to one segmeat of code without
generating adverse side effects in another segment. Another name for this attribute is
stability. The degree that a system is modifiable is directly related to the system’s measure
of coupling and cohesiveness. A modifiable system is produced through the application of
sound implementation techniques to a solid design [Yourdon 80]. Once produced, a

modifiable system is easily changed and maintained.

4. Modularity
Modularity is defined as the partitioning of the system into small segments.
Creating a modular system also begins during the design phase. A major goal of this
process is to design each segment around a particular logical function performed by the
system [Parnas 79]. This produces a system exhibiting strong cohesion. Another goal is to
minimize the amount of coupling. This is done by using a clean and concise interface with
data encapsulation; the hiding of data elements. The success of this process is measured

through the ease of implementation and maintenance.

5. Readability
Occasionally, original developers are no longer available after a system’s
completion [Yourdon 80]. For this reason, systems need to exhibit the same behavior
during operation as expressed in the sourcs code. This characteristic is termed readability.
Small modules with independent, well defined and clearly documented behavior are the

most readable. Therefore it is important for modules to exhibit simplicity and consistency

[Scott 93].

6. Robustness

Systems that can detect errors (or exceptions) and recover are considered robust

or fault tolerant. This requires the addition of exception handling functions and procedures
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to the system. These code segments allow the system to process exceptional conditions

such as division by zero or value out of limits [Scott 93].

D. CHARACTERISTICS OF MML-10

MML-10 was an attempt to restructure the system by collecting related functions into
seperate modules. Although this strengthened cohesion, improvements were limited due to
the usage of global variables [Scott 93]. Almost all of the global variables are declared and
initialized in the module main.c. However, most global variables are actually used or
referenced in one or more different modules. There are also several instances in MML-10
where global flags set in one module effect the behavior of a function in another. Collecting
the data elements into one common area also eliminated the requirements for clean
interfaces between modules. This has resulted in a tightly coupled system.

To reduce system coupling, the required global variables should be re-located to the
modules that reference them. These variables should then be encapsulated with the
development of module interfaces.

The MML-10 source code is difficult to read. One reason is poor documentation.
MML-10’s comments are minimal and often give incomplete descriptions of the code.
Also, the short motion control theory nomenclature is used for the system’s global variable
names. Source code documentation can be improved using a combination of well placed,
informative comments and descriptive symbolic names.

Improper use of pointers is another reason MML- 10 tends to be confusing and difficult
to understand. In many places, global pointers reference global variables while some
assignments are improperly type casted. In other places, pointers are used in a cryptic
manner. For example, instead of using standard indexing to sequence through an array,
pointers are used. These practices should be avoided.

One of the goals of the MML project was to modify the system, making it easily ported

to other hardware platforms. This involved converting the current system to a portable
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language, such as ANSI C or C++, while minimizing the amount of required assembly
code. It also implies that hardware dependencies should be local to a few modules.
However, attempts to reengineer MML-10 by replacing existing non-ANSI C or

assembly code with ANSI C failed. For example, Figure 5 shows the addition of two

Module main.asm.s

Jlong SEAN

movl #0 SEAN

Figure 5: Introduction of a Unique Variable

statements to an assembly language module belonging to the system. The first statement,
dong SEAN, simply introduces a unique variable, while the second statement, movl!
#0,SEAN, initializes it. Prior to the change, the system executed properly. After adding the
two program statements, the resulting system would no longer function. No other changes
were made. Similar results occurred when adding or deleting output statements. To create

a stable system, MML should be re-implemented using solid engineering techniques.
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III. YAMABICO HARDWARE ARCHITECTURE

The Yamabico-11 is a collection of hardware sub-systems assembled on an aluminum

frame. As shown in Figure 6, these hardware sub-systems include: a CPU system, a wheels

PN
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g 7| with IMB RAM
) A :
Dual Axis - A
\— / Controller Wheel System
VME
) kY L \
BUS | Sonar Board Sonar System
) 7
1
ol Unix Host
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, .|  Serial System |
with 2 Serial !
) 7 Boards . \
Console System
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Figure 6: Yamabico-11 Computer Architecture

system, a sonar system, a serial system, a Unix host system and a console system used as
the communications interface.

The chassis houses two 12-volt rechargeable batteries. These batteries power all sub-
systems except for the console. The chassis rests on four spring-loaded castering wheels for
balance while two wheels attached to the chassis in a differential arrangement control robot

movement The actual robot is shown in Figure 7.
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A. THE CPU 5YSTEM

The current CPU sub-system uses a VME7120 32-bit motherboard. The board contains
a Motorola based MC68020 CPU operating at 16MHz and a MC68881 co-processor for
floating point arithmetic [VCM 86]. The system also includes one megabyte of dynamic
memory and a ROM based VME7920 Debugging Package. The debugger is used as the
monitor program when the system is powered on [VDP 86]. An upgrade of the sub-system
to a SPARC-4 processor board containing 16 megabytes of dynamic memory is planned.

One of the main functions of the CPU is to manage the interrupt driven requests from
the other subsystems. As mentioned earlier, the MC68020 CPU provides eight levels of
interrupts. The assignment of each interrupt ievel is summarized in Table 1 [MacPherson

93]. To handle the interrupts, the MC68020 uses a special purpose register to hold the
TABLE 1: MML SYSTEM TASK PRIORITY

In&rxft Irsltoeglégt Function Interrupt Type | Vector Du(r:st;on
-.;_..—7 T Stc-)p_].:mtto:---=IL= Reset =Asynch=ronous T - [ -
6 - Not Used - - -
5 - Not Used - - -
4 Serial Board 1 Motion Synchronous 64 2500
3 Serial Board 0 Console Asynchronous 65 variable
2 Sonar Board Sonar Synchronous 66 240
1 Serial Board 0 Debugger Synchronous 67 -
0 - User Program None - -

address of a vector table. This table is essentially an array of 256 elements, where each
element can store the address of an exception/interrupt handler. When an exception/
interrupt is signaled, the CPU saves the current status word and the status word is modified
for interrupt processing. Next, an index value into the vector table is obtained from the

interrupting device. Then the current context is saved on a supervisor stack. Finally,
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execution resumes at the address located in the vector table cell specified by the index
value. When the interrupt handler is finished, the rfe assembly instruction restores the

processor to the state prior to the interrupt [MC68020 85].

B. THE SERIAL SYSTEM
The serial sub-system is composed of two VMER8300 Quad Serial Port Boards. Each

board contains a VME bus interface and two serial communications controllers. Each
controller manages two serial ports. Associated with each port is a timer/counter that may
be used for baud rate generation or asynchronous/synchronous interrupt control. There also
exists a fifth timer/counter that is primarily used to generate synchronous interrupts.
However, each board contains only two latches for a maximum configuration of two levels

of interrupts per board [VQS &6]. Figure 8 shows the conceptual layout of a serial board.

Latch 1 Timer #5 Latch 2
Controller 1 Controller 2
Port A Port B Port A Port B

Figure 8: Serial Board Conceptual Diagram

The ports and timers are configured by reading from and writing to registers located
on the serial boards. These registers are memory mapped and are accessed through absolute

addressing.

C. THE WHEELS SYSTEM

The wheel sub-system consists of two independent DC motors that drive the two

wheels in either the forward or reverse direction, controlling the robot’s movement.
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Braking can also be applied tc the motors. Each motor has an associated shaft encoder that
is used to determine distance traveled, speed, and to make odometry correction.

A dual axis controller board serves as the interface between the wheel motors, the shaft
encoders and the CPU. It contains memory mapped registers that are accessed through
absolute addressing. These registers are used to enable/disable the motors, read the shaft
2ncoders and to send pulse width modulation values. A pulse width modulation value is an
eight-bit integer that determines the strength of a short electrical pulse sent to a motor to
create movement. Since each pulse is short, constant pulse generations are required to

produce smooth, continuous motion.

D. THE SONAR SYSTEM

The sonar sub-system contains twelve 40kHz ultrasonic sensors. These sensors are
used to gather sonar return information from the forward/rear, lateral or diagonal
directions. Three control boards are used to control the sensors and collect return

information. A VME bus card is used as the interface between the control cards and the

CPU [DeClue 93).

E. THE UNIX HOST SYSTEM

The Unix host system is a Sun-3 workstation using SunOS 4.1.1. It is connected to the
robot through a serial port on the first serial board. The host is used to develop software that
will be transferred to the robot. It also accepts collected data from the robot. The interface

is easily disconnected during robot operation, allowing full motion freedom.

F. THE CONSOLE SYSTEM

A Macintosh Power Book is the main component of the console sub-system and is the
only input/output device when Yamabico operates as a self-contained robot. The Power
Book is connected to the robot through a serial port on the second serial board and provides
the interface between the user and the robot’s debug monitor through a software

communications package. It also has its own rechargeable power supply.
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IV. SYSTEM DESIGN

A. DESIGN GOALS

Initially, the goal of the reengineering process was to add structure to MML-10,
replacing non-ANSI C code with ANSI C. However, it was soon realized that a
monumental effort would be required. Therefore, a plan to re-design the core system was
initiated.

Since MML is used in conducting research by many people, the new design was based
on three requirements. First, the system must be easy to read and easy to maintain.
Therefore, modularity is a primary goal of the new design. As discussed earlier, a modular
system exhibits strong cohesion and loose coupling.

MML will see many modifications and changes as the system continues to evolve and
expand. Therefore, the second requirement is system stability. The creation of a stable
system begins by applying solid implementation techniques to a modular design. Some
important techniques that promote stability are discussed in Chapter V1.

The third requirement is portability. When the Yamabico’s processor is upgraded, the
new software should only require minor changes. This implies that the assembly code
should be minimized and the hardware dependencies localized. A portable system also
promotes software re-use for future platforms.

A secondary objective is to create an object oriented type design. This will encourage

the smooth transition to an object oriented language such as C++.

B. MODELING NOTATION

When modeling software, the goal of the notation is to produce a picture of the
software system that is clear and easy to interpret. It must simplify the system by
highlighting the important features, while hiding the details [Constantine 94].

The notation chosen to model the new design is shown in Figure 9. A software system

or hardware component is represented by a solid box. Interrupt handlers are shown as
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dashed circles while solid circles indicate system processes. In some systems, the interface
is not yet finalized. For this reason a single solid circle may represent more than one
process. Solid arrows depict messages between systems and/or processes, while dashed
arrows display the signals used to activate interrupt handlers and system control processes.

Finally, data stores are indicated by two solid parallel lines.

P \
m/Hard /
Syséeomponer‘:;m Interrupt Handler \
/
\ -~_7

SystemProcess  _ g Control Signal c——
Messages £
ol';?o?:reshggsre Data Store

Figure 9: Design Notation

C. SYSTEM DESIGN

1.  System Overview
A mod-l of MML is illustrated in Figure 10. This diagram depicts MML as a
network of five sub-systems: a CPU system, a motion control system, a terminal system, a
sonar system and a user program. This overview is slightly more complex than the views
depicted in Figure 1 and Figure 2. Howevei, this approach helps produce the desired object
oriented design where each sub-system is treated as an object. This approach results in a

simpler system design overall.

2. CPU System

The CPU system, shown in Figure 11, is the primary system. One objective of

this system is to initialize the other sub-systems. If the system is implemented with an
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Figure 10: System Network

object oriented language, C++ for example, this can be accomplished when the object is
instantiated. However, if a non-object oriented language is used, such as ANSI C, then each
sub-system is required to have an initialization process. In the later case, the CPU system
must specifically call these initialization routines for each sub-system.

Since the interrupt control mechanism is CPU dependent, the interrupt handling

routines and the mechanism setup is part of the CPU system. The objective of this operation
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Figure 11: CPU System

is to match the interrupt handling functions to the appropriate interrupt signals. However,
the interrupt priority levels are still based on the hardware configuration.
The third function of the CPU system is to pass control to the user program. This
is done after the sub-systems have been initialized and the interrupt control process has

been properly established.

Serial System

Illustrated in Figure 12, the serial system shields the hardware details of the
VMES300 serial boards from the other sub-systems in MML. Each serial port or timer must
be properly initialized prior to its first use. This is accomplished through a pair of
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initialization processes. A set of interface routines are required by each port to read and
write character data. These interface routines are modeled after examples found in the
user’s manual [VQS 86]. Since this system directly accesses the hardware, it must NOT be
optimized. If optimization techniques are used, the initialization routines will improperly
setup the ports.

C°I‘/‘f)°1° Ii‘,‘g‘ Initialize

Set Port/
Timer

\ \

Level 3 Level 4
Interrupt Interrupt

Figure 12: Serial System

The VMES8300 boards ability to generate synchronous interrupts is . najor
benefit. They are required to generate control signals to activate other sub-systems. For this
reason the serial system is considered to be a component of the CPU system rather than an

MML sub-system (see Figure 11).
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4. Motion Control System

The motion control system depicted in Figure 13 serves two primary purposes.
First, it provides the interface for MML’s immediate and sequential commands. Immediate
commands cause instantaneous changes to control variables and are implemented using a
single process. A sequential command is only executed after the robot has completed the
previous sequential command. Therefore, each sequential command requires a process
pair. One process, called from the user program, stores the command in the instruction
buffer. The other process executes the command and is called from the motion system

control process.

Motion
MML Commands/ Control

Status Requests Signal
]

Velocity

Motion
System
Control

Wheel
System

MML
Command

Position/
Orientation
Changes

Motion Trace
System Commands

Control Variables,
Instruction Buffer .
Motion
Trace
System
Motion Control Host iutput

o

Figure 13: Motion Control System

The system’s second purpose is to control the robot’s movement. This is done

by executing the motion system control process every 10 milliseconds. Each motion control
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cycle begins by updating the current configuration using information obtained from the
wheel system. Using motion control parameters and the new configuration, it then
calculates the desired linear and rotational velocities needed to follow the current path

element. These desired velocities are then sent back to the wheel system for execution.

5. Wheel System
As indicated by Figure 13, the wheel system is a component of the motion
control system. Presented in Figure 14, the system’s primary function is to provide an
interface between the motion control system and the dual axis controller. This interface was
designed to eliminate knowledge about the robot’s architecture from the motion control
system. Therefore, the wheel system can easily be replaced by another type of locomotion

system.

Position/
Orientation
Changes

; Shaft Encoder Values
CDgrz:lml:‘l,l‘::i Encoder Value Changes
Motion Control Word

Figure 14: Wheel System

6. Sonar System
As seen in Figure 15, the sonar system’s design is similar to the motion control

system. It provides the MML sonar command interface between the user program and the
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sonar board. Some commands control the boards operation by sctting control variables,
while others return sonar information to the user program. It also contains the sonar system
control process. This process saves the current sonar returns that may be requested by the
user program. It can also record the sonar returns by sending the data to the sonar trace

system.

7.  Tracing Systems
A trace system is a small sub-system used to record selected information. Shown
in Figure 16, its interface consists of three parts. First, it contains control routines to
initialize and enable/disable the system. The initialization routine sets the size of the

logging buffer, while the enable routine sets the frequency that the data is logged. The




second part of the interface consists of the logging routines. These routines save the
selected data after ensuring that the buffer is not full. The third component downloads the
recorded information to the host Unix system. Only character data can be sent to the host
system. Therefore, the download process must convert the data if necessary.

There are two tracing system components in the new design. One is located in
the motion control system and is used for debugging. The other is located in the sonar

system. This component is used to log sonar return information.

Trace System Log Data Download
Commands Commands Command

Log Data
Command

Send Data
As Text

Trace Variables,

Logged Data Host Output

Figure 16: Tracing Systems

8. Terminal System
The transfer of information between a processor and a device, such as a terminal,
is time consuming. In real-time systems, it is unacceptable for a high priority system to wait
for I/O completion, monopolizing the CPU. However, the ability to display information
from these high priority systems is still desirable.
' The purpose of the terminal system is to provide any sub-system the capability

to display information. As presented in Figure 17, the terminal system accomplishes this
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objective using asynchronous interrupt driven output along with a set of I/O routines. This
allows a high priority sub-system to continue executing by sending output information to
the terminal system for processing. Input is not interrupt driven and should only be used by

low priority routines.

Commands Output
Control
Input Output Signal

Console Console
Input Output Buffer Output

Figure 17: Terminal System

When an output routine is called, the routine converts the data into a character
representation if necessary. It then stores the string of characters into an output buffer that
uses a queue data structure. The routine then sends a null character directly to the terminal
using console output. After a character is sent to the terminal, an interrupt is generated by
the hardware requesting another character. This interrupt activates the terminal output
control process. The process de-queucs the first character from the buffer and sends it to
the terminal, which then generates another interrupt. This operation continues until the

buffer is empty and the control process terminates the interrupt cycle.




V. YAMABICO SOFTWARE DEVELOPMENT ENVIRONMENT

The current scftware development environment for the robot is rcstricted to a single
Sun-3 workstation using SunOS 4.1.1. The reason is that this workstation shares the same
processor architecture as the robot. The development cycle will improve when the robot’s
CPU system is upgraded to a SPARC-4 processor due to more advanced development
tools, FTP transfer capability and support for system I/O by the resident debugger.

The Yamabico-11 does not use a commercial operating system. This means the user
must perform some of the basic operating systemn functions through the resident debugger.
First, the user must load the program into memory. Then control of the CPU must be
transferred from the debugger program to the user’s program by placing the address of the
first instruction to be executed into the program counter (pc). The user must also ensure the
program returns control to the debugger when it has terminated. Preparations for these

functions begin with the compilation phase.

A. C COMPILERS

The only compilers available for the current development environment are the Unix C
Compiler and the GNU Project C Compiler. Both compilers are invoked through a

compiler driver.

1.  Compiler Drivers

As shown in Figure 18, a compiler driver is a program that creates executabie
code by sequentially calling the pre-processor, compiler, assembler and linker with the
appropriately supplied parameters and files. The driver for the Unix C compiler is cc, while
the driver for the GNU C compiler is gcc. When invoked, the driver passes the C source
file to the pre-processor. Output from the pre-processor is then passed to the compiler. Each
compiler is essentially a translator, translating the C source file into equivalent assembly
code. The compiler driver then passes this assembly code to the assembler to create object

code. Next the driver passes the assembler output to the linker to build executable code. The
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Figure 18: Compiler Driver Process
output from the linker is then stored in a file in the developer’s directory. This process can
be verified by using compiler flags to display the compiler driver commands. These flags

are -dryrun for cc and -v for gcc [CPG 88][Stallman 89].

2.  Code Optimization

Producing optimized object code is one of the goals of program development.
Both compilers will optimize source code if the -O flag is used. However, this is not always
desirable. There are instances where several values must be assigned to a variable or
address in succession, as in initializing serial ports for example. If this optimization
function is enabled, the compiler would eliminate all but the last assignment, resulting in
an improperly initialized port. This can be verified by inspecting the assembly code
translation produced when the flag -S is used with -O. The -S flag instructs the compiler
driver to stop after translating the C source file into assembly code, storing the translation
in a file. This file will be given the same name as the source code with the exception of a .s
extension. Inspection of the assembly code will reveal that only the last assignment is
retained. Therefore the developer must be careful in deciding which modules can be safely
optimized by the compiler [CPG 88][Stallman 89).

Another way of optimizing code is by using ‘#define’ statements to declare
constants instead of ‘const.” Constants declared using ‘const’ are stored on the stack during
run time. References are implicit, using the stack pointer and an offset. Using the ‘#define’

method causes the compiler’s pre-processor te substitute the actual value into the source
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code prior to compilation. This is the equivalent to hard coding the values except that it is

cleaner and easier to maintain/modify.

3. Standard Libraries

It is assumed that the generated executable code will be run on the platform used
for development. Therefore each compiler uses and depends on its own set of standard
libraries. These libraries are usually linked with the object code automatically by the
compiler driver when creating the executable. However, some of the routines in these
libraries make calls to the operating system. Since the robot does not have an operating
system, these libraries should not be used. Standard C functions for input/output or file
operations such as printf() should also not be used. Therefore, the compiler driver should
be instructed to stop before the linking phase by using the -¢ flag. It will then save an object
file with a .o extension for each C source file passed to the compiler driver. These files can

then be used in an explicit call to linker without the libraries [CPG 88][Stallman 89].

4. CCvs.GCC
There is a major difference between the two compilers. The Unix compiler is for
source code developed using the K&R standard, a style of developing C source code
designed by Brian Kemnighan and Dennis Ritchie. This standard was developed prior to the
ANSI standard adopted in 1989. The GNU compiler was designed for source code written
in ANSI C. The use of function prototypes for paranieter checking is one of the major

advantages the ANSI standard has over the K&R standard.

5. Using GCC
The GNU Project C Compiler does have some peculiarities that must be taken
into consideration when developing programs for the robot. First, the compiler generates a
call to __main() as the first statement in main(). Since gcc’s libraries are not linked with the

object code, the result will be an undefined symbol error during linking. Therefore, the
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developer must explicitly create a function called __main() that returns void. The function
definition should only include a simple return statement.

The compiler may also insert calls to certain standard library routines, such as
memcpy() and memset(). Since the libraries are not included during the linking phase, again
the result will be an undefined symbol error. Therefore the user must either develop these
functions or build a new library for the robot. The Unix ar command can be used to extract
copies of these functions from the standard libraries and to build the new library [SRM 88].

Another precaution is associated with how the compiler generates storage for
locally declared strings. Storage for strings deciared within a function body is allocated
immediately prior to the address of the function itself. Currently, this only effects the
functions main() and user() since they must start at an absolute address. This is discussed
later in this chapter. Therefore, the developer should not declare local strings in either
function.

Two flags that are helpful to use are -Wall and -Wpointer-arith. The -Wall flag
instructs the compiler to issue common warning messages. For example messages will be
displayed when variables are declared but not used, when functions are implicitly declared
as returning an integer or when functions declared to return a non-void value but do not
have a return statement in the function definintion. To receive warnings concerning the use
of pointer arithmatic, use the -Wpointer-arith flag. This allows the developer to find

accidental uses of pointer arithmatic {Stallman 89].

B. LINKING

Each object file passed to the Unix linker (/d) consists of a text segment and a symbol
table. The text segment contains the executable instructions while the symbol table contains
the symbols (function names and global variables) that can be accessed by other modules.
When multiple object files are used, the linker starts by appending the text segment of the
second file to the first’s. The text segment of each additional object file is then appended

in the order given to create one text segment. All symbols are also collected into one
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symbol table [SRM 88). Figure 19 shows an example object module created from the

following command: /d main.o iosys.o serial.o.

main.o functions

iosys.o functions

serial.o functions

symbol table: includes
global variable names
and function names of
main.o, iosys.o and
serial.o

Figure 19: Example of Composite Object File

After all object files have been processed, the linker must calculate the absolute
address of each symbol in the symbol table. Addresses for functions are determined using
the offset relative to the beginning of the program and the program’s starting location.
Absolute address calculation for global variables is based on an offset from the next page
boundary following the text segment. It then resolves all references to these symbols.

After all references are resolved, the linker creates a load module. This module is a file
of records used by the loader. These records contain either instructions or initialized global
data along with the address in memory where they are to be located by the loader. All of
the records containing text (instructions) are collected and placed prior to the records

containing the initialized global data.
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1.  The Kernel Module

Currently, all programs are divided into two load modules. One module is the
kernel while the other contains the motion commands. The kernel contains main() and most
of the code. As mentioned earlier, the user must know where the program execution begins.
It is standard practice to load the kernel at hexadecimal address 0x304000. Therefore, the
first instruction in the function main() must be located at this address. To correctly resolve
the symbolic references, the kernel’s starting location must be passed to the linker by using
the -T 304000 flag [SRM 83].

Since the creation of the text segment is based on the order of object files passed
to the linker, the object file containing the definition of main() must be the first file in that
list. The order of the remaining files is unimportant. Additionally, since cc and gcc generate
object code as defined in the C source file, main() must be the first function defined in its
source file. Finally, if local strings are defined in main(), gcc will reserve memory storage
prior to main(). Consequently, 0x304000 would be the address of the string instead of the
first executable instruction. These last two points can be verified by using the -S flag and

inspecting the resulting assembly code. For an example, see Figure 20.

C Source Assembly Translation

main(){ .ascii “Hello World\D"
even
_main:

printf(*“Hello World™);

jbsr _printf

Figure 20: Effects of Compilation on Strings




2.  The User Module

The user module contains MML library function calls. Its construction is similar
to the kernel with a few exceptions. First, the function User() is the primary function
instead of main(). Second, the module is loaded at hexadecimal address 0x334000 vice
0x304000.

Since User() is called by the kernel, the kernel must know User()’s location.
However, User() must also know the location of the functions in the kernel too. Making
User() accessible to the kernel is accomplished by declaring pointer to a function returning
void within the kernel, and initializing it to 0x334000. To provide access to the kernel’s
functions, use the -A kernel flag to link the user module with kernel’s symbol table. One
note of caution, the user module is now dependent on the kernel. Therefore any change to

the kernel requires the user module to be re-linked.

C. LOADING

Before a program can be executed, it must be placed into random access memory by a
loader. Each record in the load module contains instructions or initialized data information
along with an address. The loader then loads the information from each record at the
address specified.

However, the loader for the robot is a simple program that essentially dumps the
information sequentially from all records beginning at either 0x304000 or 0x334000. This
does not interfere with the placement of the program instructions. But the global variable
initialization data is erroneously placed at the end of the text segment instead of in the
global variables. Therefore, global variables initialized at compile time actually contain
unpredictable data when the program is loaded. The solution to this problem is to initialize
all data at run-time, prior to executing the program. Figure 21 shows the robot’s memory

framework after program loading.
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)
®
®
0x304000
kemel text segment
®
)
First page boundary bt
after text segment
kemel data segment
)
0x334000
user text segment
°
®
™

Figure 21: Yamabico-11 Memory Map

D. DEBUGGING TOOLS

1. The Onboard Debugger
As mentioned earlier, the CPU system includes the VME7920 Debugging
Package. This monitor program is primarily used to load and execute programs on the
robot. However, it can be used to debug programs. The developer can set breakpoints at a
particular instruction, halting program execution. The value of variables or registers can be
examined and modified. The debugger will even aid the developer by displaying machine
code in assembly instruction format. The only requirement is knowledge of the

instruction’s or variable’s memory location [VDP 86].
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2. The Unix nm Command

To obtain the address of variables or functions from an executable file, the Unix
nm command can be used. The nm command displays a files symbol table. For example,
entering nm -n user will generate a listing containing each symbol (global variable or
function name) in user’s symbol table along with its location in memory. The -n flag
instructs the command to sort the list by memory location. This listing gives the developer
the memory address locations needed to debug programs with the VME7920 Debugging
Package [SRM 88].
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V1. SYSTEM IMPLEMENTATION AND TESTING

ANSI C was the language chosen to implement the new design instead of the older
K&R version used in MML- 10 since it provides stronger type checking through prototypes.
Since the two versions are similar, some of MML-10’s source code could be ported to the
new design with minor modifications. ANSI C also enables a smooth transition of MML to
an object oriented paradigm using C++. However, the only ANSI C compiler locally

available for the robot’s software development environment is GNU’s gcc.

A. IMPLEMENTATION TECHNIQUES

1.  Stability

Producing a stable system is one of the primary objectives during the
implementation phase. One method for producing a stable system is to use encapsulation.
In C, this is accomplished by declaring global variables and local functions with the static
specifier. These identifiers can be referenced from sources within the file but prevents
external references.

Reducing unnecessary pointers and pointer arithmetic is another way of
producing a stable system. Generally, there are only two reasons to call a function. The first
reason is to produce some action, such as displaying a value. In this case, actual values are
passed as parameters and the function does not return a value. The second reason to call a
function is to process information, producing one or more results. In this case, it is common
to let the function assign the values directly by passing the addresses of these variables as
parameters. However, this can lead to many programming errors. A better method for
writing these functions is to use a return statement. To return more than a single value, a

structure of values should be used.
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2.  Portability

a. Required Assembly Code

Each assembly instruction corresponds to a single machine instruction. It
also produces hardware dependencies since each processor has its own assembly language.
Therefore programming in assembly language is very difficult and should be avoided.

One reason to use assembly language programming is to increase the speed
of program execution [Schildt 90]. Although MML is a real-time system with timing
constraints, it is still a research project. Using assembly language to increase program
execution simply adds complexity.

The primary reason to use assembly language is to access specific hardware
components or instructions that can not be accessed in any other manner [Schildt 90]. The
status register and rfe instruction are examples of such requirements when using the
Motorola 68020 processor. Modification of the status register is handled by instructions
used for special registers. The rte is used to return from an interrupt handling routine

instead of the normal rts instruction.

b. Handling Interrupts

Setting up an interrupt mechanism requires two steps. First, an interrupt
handler must be created. This routine is a basic shell that must be written in assembly
language. The routine must begin by saving all of the CPU’s registers onto the stack. If a
coprocessor is used, those registers must be saved as well. Then the routine must make a
call to a C function that will control the real processing during the interrupt cycle. Once
control is returned from the C function, the interrupt handler must restore each register to
the value it contained prior to the interrupt. It is important to note that the registers must be
restored in the reverse order as they were saved. Finally, the rte instruction is used to return
from the interrupt.

The second step in establishing an interrupt mechanism is to setup the CPU

and interrupting hardware component. This is a two step process. First, the address of the
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interrupt handler must be placed in the CPU’s vector table. Next, the index value of the
table entry is passed to the interrupting device. Once these two steps are complete, the

hardware device can be enabled.

¢. Absolute Addressing in C

In C, each variable declared as a pointer stores a 32-hi* memory address and

can be assigned constant values between zero and 232.1. The amount of memory that a
pointer references depends on the pointer’s declaration. For example, if a variable is
declared as a character pointer, only a single byte, located at pointer’s value, will be
referenced. But, if the variable is declared as an integer pointer, then four bytes will be
referenced by the pointer, starting at the value of the pointer.

The amount of memory that a pointer references can be temporarily
changed. Using the cast operator, a pointer is changed to another pointer type. However,
the change only lasts for that operation. Afterwards the pointer reverts back to a pointer of

its declared form.

3. Readability

One technique for making a system more readable is to use descriptive names
for functions, variables and constants. Abbreviations should never be used. When declaring
a symbol, two conventions are generally used: separate multiple words with underscores or
capitalize the first letter of each word in the symbol. The later convention is used
throughout this implementation. Another naming convention utilized in this
implementation is to declare or define constant symbols with all capital letters.

Header files are used to declare the prototypes for each function in a module that
can be accessed using external calls. This presents the file’s interface and should be well
documented. The comments should describe what parameters are required and the expected
results. A description of the algorithm is not needed. However, constants needed by a C file

that may also be referenced by other files are included in its header file also.




Another technique to making a system more readable is to limit the size of the
functions to one page. Techniques such as page breaks between functions and good

descriptive comments should also be used.

4. Backward Compatibility

Te maintain backward compatibility, the new system generates user and kernel
object files. The kemel is still loaded at 0x304000 and user is loaded at 0x334000. The
absolute address of user() is declared in motorola.asm.s as _user. To prevent the linking
error of duplicate symbols, the actual name of the user function in user.c should be User()
instead of user(). However, to transfer control to the user program, main() is still required
to call user() instead of User().

To maintain compatibility with MML-10’s immediate command names, a
translation header file was created. This is a file containing macros, used by a pre-
processor, that replace the old command syntax with the new command syntax. A similar
one should be created for other MML-10 commands so that previcusly created user

programs can operate with the new system.

B. SYSTEM IMPLEMENTATION

Due to the scope of the design, it was decided that only a core portion of the new design
would be implemented, starting with the CPU system. The system described in this section
consists of files with .c, .k, and .s extensions. Those files ending with a .c are C source files.
These files contain function definitions and encapsulated data structures. The .h files are
the header files, while the files ending with a .s are written in assembly language. With the
exception of main.c, each C and assembly file has an associated header file. All files are
presented in the Appendices and were developed as part of this study except for a few
routines found wheels.c and motorola.asm.s. These routines were ported from MML-10.
However, the system does make use of some utility functions, such as memory

management and math routines that were developed in earlier projects.
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1. The CPU System

The CPU system was implemented first since it is required to initialize all other
systems. Appendix A contains the source code for this system. It contains the files:
definitions.h, main.c, system.h, system.c, motorola.h, motorola.asm.s, se-ial.h, and serial.c.

The definitions.h file contains the system’s standard type declarations. Some of
the new data types refer to constructs used by the motion system. Other declarations define
standard assembly language data types, such as BYTE and WORD. These definitions make
the code easier to follow.

The file main.c only contains mainy) to prevent the linking problem discussed
earlier. This is the function that gets loaded at 0x304000. It initializes tl.c sub-systems and
then calls user(), the user program. After the user program is finished, rexit() is called to
return control back to the resident debugger.

The Initialization routines called by main() are located in system.c. They are used
to setup the interrupt mechanisms described earlier. Also included in this file are the some
sysiem functions for enabling and disabling interrupts and the __main() function required
by the gcc compiler.

The motorola.asm.s module contains all of MML’s required assembly code. The
interrupt handling shells described above are located in this module. Also defined here is a
routine to change the CPU’s interrupt priority level. The rexit() routine is located in this
module since it uses a sequence of instructions that are difficult to duplicate using a high
level language. The address of user() is also set in this file.

The serial.c module contains the serial system. As mentioned earlier, this is a
component of the CPU system. It serves as an interface between the serial boards and the
other sub-systems. The previously discussed technique for referencing absolute memory

locations is evident in this module.
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2. The Terminal System

The terminal system was chosen as the next system to implement as this would
aid in debugging other systems. The files iosys.h and iosys.c contain the system’s source
code and are located in Appendix B. The functions defined in iosys.c provide input and
output for string, integer and real number data types.

Some of the functions depend on conversion routines. Some routines convert
strings to integer or real values. Others convert integer and real values to strings. Notice
how the global data is encapsulated by using the static specifier. This prevents routines

outside this module from accessing these variables.

3.  The Motion Control System
Appendix C contains the files: motion.h, motion.c, motiontrace.h motiontrace.c,
wheels.h, and wheels.c. These files define the motion control system. motion.c defines the
functions that support odometry and velocity control. The wheel system component is
defined 1n the wheels.c module while motiontrace.c defines motion’s tracing system
component. The tracing system depcnds on memory management routines. The motion

control rules required for path following are not implemented in this core system.

4. The User Program

A sample user.c is included in Appendix D along with its user.h. This module
shows how to use the core system. Another file associated with the user system is
compatability.h. This file provides the translation layer for older user programs developed
for MML-10.

C. SYSTEM TESTING

Since the system was incrementally developed, testing was conducted at each system

modification. This section describes the testing techniques that proved most helpful.
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1.  Using an External Power Supply

The robot’s battery power was often drained due to software testing by several
people. System testing was aided by an AC power supply. To test the motion control
system, the robot was placed on wooden blocks to prevent movement. The power supply
provided sufficient power when testing the CPU and terminal systems. However, it was
discovered that the generator did not produce enough power to drive the wheels above
moderate speeds. Fast wheel movements caused the CPU to shut down due to insufficient

power. So stationary testing was conducted at slow speeds.

2.  Output from Interrupt Handlers

Displaying information to the terminal from the motion control system required
special handling. The problem was that the information would be sent to the terminal
system every 10 milliseconds, causing the output buffer to overflow. The solution was to
send the messages at a lower frequency. This was accomplished by using the LoopTest
variable in motion.c as a counter. Every motion control cycle incremented the LoopTest.
When the counter reached the frequency value of 100, it would be reset to zerc. All output
messages were then placed in a conditional block that checked the value of LoopTest. Only
when it was zero would the message be sent to the terminal system. The result is that the

message would be sent to the terminal every second instead of every 10 milliseconds.

3. Measurements

The first part of the motion control system to be implemented was the wheel
system component. Manual calculations were required to verify the operation of this
system. To verify the change in distance and orientation information, the robot was
manually pushed along a path with known distance. Several trials were performed using
paths of different lengths. When the robot’s results were compared to the path lengths
measured with a measuring tape, the differences were consistently within one centimeter.

To verify the velocity inputs to the wheel system, the tracing component is used.

Figure 22 is an sample of results obtained by changing the robot’s commanded velocity
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Figure 22: Velocity Control Results

from zero to 20 cm/s. The results show that the actual velocity is one to two centimeters per
second faster than the commanded velocity. This difference was found at all speeds tested
and is the result of a lookup table used to calculate pwm values. This table is tailored for

this specific system and requires further testing to correct the discrepancies.
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VII. CONCLUSIONS

A. RESULTS

The end product is a solid core system, capable of serving as a foundation for further
MML research. The system is implemented using a standardized language. Hardware
dependencies are localized and the required assembly code is reduced to a single module.
This results in a system that is very portable. Each module is provided with a clean interface
making the system very modular. With limited pointer references and data encapsulation
the system is also very stable. The result is a system that is very readable, easy to maintain
and easy to modify.

One of the underlying themes presented in this study is pointer reduction. This is not
to imply an unfamiliarity with the C language or the use of pointers. In fact the author is
aware of the value of using pointers and has been programming with pointers in the C
language since 1985. However, many of the researchers on the MML project do not possess
the same experience level. This has resulted in improper pointer usage, thereby increasing
program complexity and decreasing stability. This is the primary reason for recommending

the reduction pointer usage.

B. RECOMMENDATIONS

The next step for this new system is to complete the motion control system. This
requires the implementing of the motion control rules to provide path following. It also
requires the addition of the sequential commands and the instruction queue.

Following the completion of the motion control system, the sonar system should be
implemented. This will involve writing the interrupt handler shell and control process. The
assembly code should also be converted to ensure portability.

Another potential project is to develop a simulator based on the new system. Due to
the system’s modularity, this should only require the simulation of the interrupt

mechanisms and the hardware dependent code.
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APPENDIX A

A. DEFINITIONS.H
/'.'..'...Qi'..""'....'tt..'."“'..'.'.'.Qt...t"'.'...'..i"t.'t""."""‘.

Author(s): Scott Book

Project: Yamabico Robot Control System

Da.a: December 8, 1993

Revised: March 4, 1994

File Name: definitions.h

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file contains standard definitions and data type
declarations used througi:out the reset of the MML system.

."Q'.'."i.'t".""'""..t.i'.""."."."...".."..Q.i"..'.Q'tt".'.'.'.'/

#ifndef __DEFINITIONS_H

#define __DEFINITIONS_H

#define MOTION_CONTROL_CYCLE 0.01

#define MAX_REAL_PRECISION 15
#detine MAX_INTEGER_DIGITS 19

typedef enum {FALSE = 0, TRUE} BOOLEAN;

typedef unsigned char BYTE;
typedef unsigned short WORD,;
typedef unsigned fong LONG;
typedef unsigned long* ADDRESS;

typedef struct{
double Linear;
double Rotational;
} VELOCITY;

typedef struct{
double XPosition;
double YPosition;
) POINT;

typedef struct|
POINT Position;
double Orientation;
double Kappa;
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} CONFIGURATION;

#endif

MAIN.C
lun'-0..'i"ﬁ'..".'i.'.'""..QQ....".Q.Q...‘........"".i"'.".'.'."'t""t

Author(s): Scott Book

Project: Yaraabico Robot Control System

Date: December 8, 1993

Reviseu: March 4, 1994

File Name: main.c

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file contains main(). Its purpose is to initialize all
sub-systems and then pass control to user(). Once user() is
complete, the routine returns control to the resident debugger.

Q."'i"."ﬁ'."..'.ﬁi'.t.'.0.".0"".'...."""'.""t.'...’.'.i"t.ﬁ..'..t"/

#include “definitions.h”
#include “motorola.h”
#include “system.h”
#include “memsys.h”
#include “iosys.h”
#include “serial.h”
#include “motion.h”
#include “user.h”
void user();
void main(){
CpuSysinitialize();
ResetSernalBoards();
SetinterruptPriority(7);
InitializeMemSys();

InitializeConsole();
InitializeHost();

loSyslnitialize();
MotionSysinitialize();

SetinterruptPriority(0);

user();
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rexit();

C. SYSTEM.H

/'.".""'Q"'."'.i....."...'."'...'t"..".'t"'.."'.'...'..'Q...Q.'.'.'...

Author(s): Scott Book

Project: Yamabico Robot Control System

Date: December 8, 1993

Revised: March 4, 1994

File Name: system.h

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file contains the prototypes for routines that are hardware
dependent.

'.'".'.t'.'.".".'..."...'......'..".'Q.".Q."'.'""i.ﬁ'.t'.'.'.."."."./

#ifndef __SYSTEM_H

#define _ SYSTEM_H

/'.Q'.."Q'.'.t't"'."Q".."."O..'.....t'..Q....Qt.."..""'..'..'...."....'

Function ___main() is an empty function. It is required if gcc is used since
gcce will insert a call to ___main() within main().

(2222 L1 1) 21 22 * ] /

void __main();

/ » sevrnseRNRey e e * s

Function CpuSysinitialize() is used to set up any requirements that are
specific to the Motorola 68020 CPU.

L3 2 *heed » *od ----/
void CpuSysinitialize();
/ sonsee saenee .
Function Enableinterrupts() tums on interrupt servicing.
» *hw LA A A A 4 4 4 Al A 2 22 2l sl ) sl dd Ll LA A A 2 4 4 2 3 2 2 ---/
void Enablelnterrupts();
Function Disableinterrupts() turns off interrupt servicing.
----- -*e -l » L 2 ] hevhd tod LA A 4 rohdd --I

void Disableinterrupts();

,"'Q'"Q"'Q".."'.'...'..QQ"..'.Q""..'Q'."".Ql."Q'"".'.".'..i."'t"'

Function SetConsoleintMechanism() establishes the console’s interrupt
driven output mechanism.

'.Q'.'.'"'Q.Q".Q.."'.'..""..'.'.Q'.'.""Q.."""'"'.."'.".Q.."'.....',

void SetConsoleintMechanism();
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/..'.'."""."it."...'"'.'Q.".'i"'Q."..‘.".".'.".'.'.'.'."Q".."'.'..

Function SetMotionintMechanism() establishes the synchronous interrupt
mechanism required for motion control.

"."Q.".Q...........Q’.'.........'..I..'.t.'."'.'Q'.'..'......'Q...""."'.'/

void SetMotionintMechanism();

#endif

SYSTEM.C
/QQ"."'Q..Q'i.'.ﬁ".'.....i'..‘.' P22 A 222 222 TR Lo s il el iRttt ettt lzed]

Author(s): Scott Book

Project: Yamabico Robot Control System

Date: December 8, 1993

Revised: March 4, 1994

File Name: system.c

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file contains the required cpu specific routines. The file
is seperated into two sections: private and public. The private
section contains the encapsulated data while the public section
contains the routines available to other systems/modules.

----- » L4 4] he /

#include “definitions.h”
#include “motorola.h”
#include “serial.h”
#include “system.h”

static int SavedinterruptMask;
static BOOLEAN InterruptsOn;

Routine ___main is required when using the ‘gcc’ compiler. This is because the
compiler inserts a call to this routine at the beginning of the main function
defined for the program. This is normally taken care of by linking in the

bootstrap object modules, however these are not added to a program that
operates without an operating system such as the mml program. Therefore, since
this routine is called, the only requirement is for this routine to simply

return back to the main program.

(22 14 1222222222222 1 221] /

void __main(){
retum;

}
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/ . sesanenn e eeensentN et »

Function CpuSysinitialize() is used to set up any requirements that are
specific to the Motorola 68020 CPU.
- * R L4 LA A a4 ad Al 444 dd il Al ddlassddadilliil]] [ 222121223 27] /

void CpuSysinitialize(){
ADDRESS VectorTableBaseAddress = GetVectorBase();

P . . nrrRterRREEEsRaRN N casevanneanees
* Use a blank interrupt handler to recover from unexpected exceptions
* such as when the status word is set to a specific value in function

* SetinterruptPriority. So enter the address of that interrupt handling

* routine into the 255th entry of the exception/interrupt vector table.

kb ek dd LA A AR LA A A Al A ddd A d i dddd sl *he® /

*(VectorTableBaseAddress + 255) = (LONG)Unexpected;

InterruptsOn = TRUE;
SavedinterruptMask = 0;

[reversenserasctestanasattnanerasenee etae » resenerarsare

Function Enablelnterrupts() allows other systems to reset the interrupt mask
to the previously stored value.

SNt dd S Ladd o A b b A b Sl s d g d s s 2 il *hhe - /

void Enablelnterrupts(){
if(InterruptsOn == FALSE){
interruptsOn = TRUE;
SetinterruptPriority(SavedinterruptMask);
}
}

/ * . »e sestenneves sensane nn .

Function Disableinterrupts() allows other systems disable all interrupt
servicing. The current interrupt mask is saved so that it can be restored
later.

void Disableinterrupts(){
if(InterruptsOn == TRUE){
SavedinterruptMask = SetinterruptPriority(7);
InterruptsOn = FALSE;

)
}
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/Q."..""Qt.....""".".".".'i.Q"'.Qi't.'tQ..Q.""'"t"."'.'t“.""'.'

Function SetConsolelntMechanism() establishes the console’s interrupt
driven output mechanism.

LA sl * ERARRR RN AR R NN RAR RN ORN SRR RN AN AN T RPN SN SN OO OO S - /

void SetConsolelntMechanism(){
ADDRESS VectorTableBaseAddress = GetVectorBase();

Disablelnterrupts();

I* Enter the address of the interrupt handling routine into the 65th */
I entry of the exception/interrupt vector table of the CPU. */
*(VectorTableBaseAddress + 65) = (LONG)loSysHandler;
SetlLatch(0xftff0031,65);

Enablelnterrupts();

/..."""".'Q.t'."‘0"""""'.'.".."'.'..."'..'.ﬁ"'.'."QQ..'..Q""."'

Function SetMotionintMechanism() establishes the synchronous interrupt
mechanism required for motion control.

CERANRCE RGO AR AR ANRRRE AT OONONOON AR RRERARENS SRS EOINANNNONRN -/

void SetMotionintMechanism(){
ADDRESS VectorTableBaseAddress = GetVectorBase();

I’ Formula: counter_value = (4e06MH / 16 frquency divider) * Interrupt_Interval */
" ex: (4e06/16)* 0.01 seconds = 2500 *
SetTimer(TIMERADDRESS_1,5,0x1¢61,2500,2500);

Disablelnterrupts();

I* Enter the address of the interrupt handling routine into the 64th */

I* entry of the exceptiorvinterrupt vector table of the CPU. */
*(VectorTableBaseAddress + 64) = (LONG)MotionSysHandler;
SetLatch(0xtfff0141,64);

Enableinmerrupts();
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E. MOTOROLA.H

[rrreeetasetettatataen T T R T T

Author(s): Scott Book

Project: Yamabico Robot Control System

Date: December 8, 1993

Revised: March 3, 1994

File Name: motorola.h

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file contains the prototypes to the required assembly
language routines.

R R ERENAEN AR EERNENAR NS AR RE AR AR N R O R RS RRN NN RO RN ROV RN R AR A NN RGO ON NN ......."'/

#itndef __ MOTOROLA_H
#define _ MOTOROLA_H

#include “definitions.h”

[ e wee * seeanw

Function rexit() is used to safely return to the debugging routine used on the
Yamabico's processor. It is a required call in order to run the kernel again
without having to reload it.

CRESNRENARNNRRNNA R SRR NE A RN S AR R LA RSN ANAAR RN ARS ..'...'.‘.'Q....'Q".'.."......i./

void rexit();

/ » sesantenane seeeatrinaeteesseeten "o

Function GetVectorBase() returns the starting address of the interrupt vectors
to the calling routine. This is needed in order to calculate the positions to
place the interrupt handler addresses.

LA Al s ot s gl d el ad it dd Rl ia et a i dd 2 il i st ia i el el slsy] t..ii.'.'i/

ADDRESS GetVectorBase();

Function SetinterruptPriority() sets the interrupt priority level to the value
passed in as a parameter, while returning the old priority level to the
calling function. The retum value can then be used to reset the priority
level at a later call. The parameter must be a 4-byte integer, and the value
must be in the range 0-7. If it is out of range, a -1 is returned to indicate
an error.

*oe PERCARAANANNC RN ERENNORROANEN *hee * /

int SetinterruptPriority(int);

IQOQ‘Q"Q.QQ.Q.Q RERRANRNARER R GG L ER AR RONRNANSAANRRN R ORGSR AT ANOR AN OO R R DS OR DRSSO OES

Interrupt handler _Unexpected is used to handie the unexpected exceptions
raised during execution of the program. Explicitly changing the status word
is an example of such an exception.

----- eV RteS - e - --w,
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void Unexpected();

/Q'...""..‘..."."".'.."'.Q"'.".'"'Q""...""i.".'..'""."..""'."

Interrupt handler _loSysHandler is used to handle the interrupts from the
serial port that is set up to handle the console I/O. It is really a shell
routine needed to call the C function that does the real work.

""‘IQ."""...'."..'.'.'....'""'.."'.'i'."..'...'""'.""Q'QQ...""..Q[

void loSysHandler();

/.i..""'.Q.....'.i'.".'.'i".'.i'ﬂtﬁ."i"..‘.0."'0'0"t"'.'."" *ARARASRSRSY

Interrupt handler _MotionSysHandler is used to handle the interrupts from a
timer on the serial board set for synchronous interrupts.

Q'.Q".Q.'Q.i..tt".’..'.'QQ‘Q"Q.."""i.'t.’t‘.'Q‘tﬁ'.'.‘.".t'.'.'t.‘t't""/

void MotionSysHandler();

#endif

MOTOROLA.ASM.S

# Author(s): Scott Book

# Project:  Yamabico Robot Control System

# Date: December 8, 1993

# Revised: March 3, 1994

# File Name: motorola.asm.s

# Environment: Sun-3 assembler for the motorola 68020 processor

# Description: This file contains the only required assembly lanaguage for the
# MML system. The main purpose of this file is to define the

# system routines that can not be defined using a higher level

# language.

# The following declaration is necessary when using cc with the -{68881 argument
# since the corresponding library is not linked in. It can be eliminated if gcc
# is used.

.comm {68881_used, 4

# Defines the address of user().
.globl _user
_user= 0x334000

.globl _rexit

.globl _GetVectorBase
.globl _SetlnterruptPriority
.globl _Unexpected




.globl _loSysHandler
.globi _MotionSysHandler
.data

text

# Routine _rexit is used to safely return to the debugging routine used on the
# Yamabsoo s processor

.even

_rexit:
trap #15
.word 0x0063
fts

# Routme _GetVectorBase raturns the stamng address of the interrupt vectors
# to the calling routine. This is only needed by higher level languages that
# can't read the vector base register (vbr) directly.

.even
_GetVectorBase:
link a6.#0 | When entering an assembly subroutine, use the
moveml #0,sp@ | link command to preserve the previous address
| in the stack pointer. This makes parameter
| passing and clean up simpler. The previous
| contents of a6 are then pushed onto the stack.
cr do | Return the starting address of the vector
movce vbr,uc | interrupt table to the calling routine.
unlk a6 | If the link command was used, ensure that the
s | unlk command is also used to restore the

| previous contents of both the stack pointer
| and a6 when the subroutine was entered.

# Routme SetlmerruptPnomy sets the interrupt pnomy level to the value

# passed in as a parameter, while returning the old priority level to the

# calling function. The return value can then be used to reset the priority

# level at a later call. The parameter must be a 4-byte integer, and the value
# must be in the range 0-7. if it is out of range, a -1 is returned to indicate

# an error.

.even

_SaetinterruptPriority:
link a6é.#0 | When entering an assembly subroutine, use the
movem! di1-d2,sp@- | link command to preserve the previous address

| in the stack pointer. This makes parameter
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clrl
clri
cirl

movi

cmpl
bgt
cmpl
bit
isHl

movw
movw
andw
orw
movw

andw
lord
bra

L10:mov!

do
di
d2

ab@(8),d2

#7,d2
L10
#0,d2
L10
#8,d2

sr,d0
do,d1
#0xFOFF,d1
d2,d1
di,sr

#0x0700,d0
#8,d0
L20

#-1,d0

L20:moveml sp@+,d1-d2

unik
s

a6

| passing and clean up simpler. The previous

| contents of a6 are then pushed onto the stack.
| Also save and clear any registers that might

| be used in the routine.

| Get the first parameter.

| Ensure that the parameter is between 0 and 7.
| If #'s not, then branch to the error area. If

| it is, then place the value in the correspond-

| ing interrupt priority area of the status

| register

| Get the current status word and use it to
| construct the new status word with the

| interrupt priority greater than or equal to
| the previous interrupt priority. All other

| uits remain unchanged.

| Finally, get the value of the previous
| interrupt priority by selecting the priority
| bits and then return the value in register d0.

| An error has occured, so return a negative
| value.

| Restore the registers that were saved on

| entry. If the link command was used, ensure

| that the unlk command is also used to restore
| the previous contents of both the stack

| pointer and a6 when the subroutine was

| entered.

# lnterrupt handler _Unexpected is used to handle !he unexpected exceptions
# raised during execution of the program. Explicitly changing the status word
#is an example of such an excepﬂon

.aven

_Unexpected:

rte

# Imerrupt handler loSysHandler is used to handle the mtenupts from the

# serial port that is set up to handle the console /O. It is really a shell

# routine needed to call the C function that does the real work. All of the

# system registers must be pushed onto the stack prior to calling the C function
# since the compiler may or may not save the contents of the registers prior to
# use, thus possibly corrupting any data in the functions that were interrupted.
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# The restoration of the register must be done in reverse ordertl

.even

_loSysHandler:
link a6 #-184
fsave ab@(-184)
fmovemx fp0-fp7,sp@-
fmovel fpcr,sp@-
fmovel fpsr,sp@-
fmovel  fpiar.sp@-
moveml d0-d7/a0-a5,sp@-
movel  #-65529,a0
moveb a0@,d0
jsr _loSysControl
moveml sp@+,d0-d7/a0-a5
fmovel sp@+.fpiar
fmovel  sp@+.fpsr
fmovel  sp@+.fpcr
fmovemx sp@+,1p0-fp7
frestore a6@(-184)
unik a6
rte

| When entering an assembly subroutine, use the
| link command to preserve the previous address
| in the stack pointer. This makes parameter

| passing and clean up simpler. The previous

| contents of a6 are then pushed onto the stack.

| Then save all of the system registers.

| Clear the B control/status register of
| port 2 for console output (as per example
| in serial pot manual).

| Call the C function that is the real work
| horse of the interrupt handler

| Restore system registers in reverse order.

| If the link command was used, ensure that the
| unlkk command is also used to restore the

| previous contents of both the stack pointer

| and a6 when the subroutine was entered.

# Intenupt handler MotlonSysHandIer is used to handle the interrupts from the
# serial board timer that is set up to generate synchronous interrupts for motion
# control. It is really a shell routine needed to call the C function that does

# the real work. All of the system registers must be pushed onto the stack prior
# to calling the C function since the compiler may or may not save the contents
# of the registers prior to use, thus possibly corrupting any data in the

# functions that were interrupted. The restoration of the register must be done
# in reverse ordert!

.even
_MotionSysHandler:
link a6 #-184
fsave a6@(-184)
tmovemx fp0-1p7.sp@-
fmovel fpcr,sp@-
fmovel  fpsr,sp@-
tmovel fpiar,sp@-
moveml d0-d7/a0-a5,sp@-
jsr _MotionSysControl

| When entering an assembly subroutine, use the
| link command to preserve the previous address
| in the stack pointer. This makes parameter

| passing and clean up simpler. The previous

| contents of a6 are then pushed onto the stack.

| Then save all of the system registers.

| Call the C function that is the real work
| horse of the interrupt handler
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movemi sp@-+,d0-d7/a0-a5
fmovel sp@-+ fpiar
fmovel sp@+.fpsr
fmovel sp@-+fpcr

fmovemx sp@+,fp0-fp7
frestore ab@(-184)
unlk a6

e

G. SERIAL.H

| Restore system registers in reverse order.

| If the link command was used, ensure that the
| unlk command is also used to restore the

| previous contents of both the stack pointer

| and a6 when the subroutine was entered.

/.".'...'..."..QQ.""..'...'.Q'."..'."'i."'.ﬁ""""'....'.ﬁ.""'."".i'

Author(s): Scott Book

Project: Yamabico Robot Control System

Date: December 8, 1993
Revised: March 2, 1994
File Name: serial.h

Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains the prototypes/interface for the available
serial system for the VME8300 Quad Serial Port

Board.

#ifndef __SERIAL_H
#define __ SERIAL_H

#include “definitions.h”

#define TIMERADDRESS_0 0xffff0011
#define TIMERADDRESS_1 0xffff0111

#define CONSOLE 0xfff{0001
#define HOST Oxffff0005
#define YSB1 Oxttf0121
#define YSB2 Oxiftf0125

Function ResetSerialBoards() resets both VME8300 Quad Serial Port Boards.

*he e

void ResetSerialBoards();

----."'..'."."Q""'"Q'.'."".QQ'/

/ tenscnnes eonn
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Function InitializeConsole() prepares the port that connects the onboard

console with the robot for I/0.

."'Q'..'.'.".'.'Q'Q....'.‘.Q"'""QQQ"..Q.../
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void InitializeConsole();

/.'.."...t'.'..'.'Q'."""'."..'Q..."""."’"'.'Q"..‘i.'Q'.ﬁ"'........'.'

Function InitializeHost() sets up the port that connects the Unix work-
station with the robot to be used for object code and data transfers.

.".".'.'CQ......"'Q"..".'...'.'Q'Q.ﬁ.'.‘.Q..'.'i"'.".""'...'.'.".i..'i/

void InitializeHost();

/.""t."..'C"".."."'Q...'...Q."...'.'.."....'i."..'.'.t'.'i..'."tt"."

Function InitializePort() establishes the communications of the given Port
to the parameters given. Baud can be assigned standard communication rates
300, 1200, 2400, 4800, 9600, or 19200. HandShaking, TxInterrupt, and
RxInterrupt are used as ON/OFF flags. An assigned value of zero will disable
these options, while any non-zero value will enable them.
..tt't.ti.attQ’ttt'.t..."'Q't.t"....t'..t""tttt...‘..tt.t.tt.'.tt."'.tttt't/
void InttializePort(LONG Pont,
LONG Baud,
LONG HandShaking,
LONG TxIinterrupt,
LONG Rxinterrupt);

/ seneresene AraRERER SRR RAEEY . reenn » srnern

Function SetTimer sets and starts a particular timer to generate interrupts
""0'.'.."..."0"'..'0..ttt.t'.’.tt."".l.'tttttt.t"tit"'.t‘t"t.'Q'Qttt't/
void SetTimer(LONG TimerAddress,

LONG CounterNumber,
LONG ModeCmd,
LONG LoadCmd,
LONG HoldCmd);

/""'Q""0."".".."....".'..'.."..'.'Q'."'."‘Q‘.'Q.""Qt'...'...".".i

Function SetlLatch() passes to the specified latch the index value of the
vector table entry containing the interrupt handlers address to the serial
board.

’ Fonanae b */

void SetLatch(LONG LatchAddress, BYTE VectorNumber);

i seee . »e * wasnserssenans .

Function PutConsole() initiates the printing of the single character Source
to the console.

* L a4 LA d 2l d ] 4l q i *ed - *e /

void PutConsole(char Source);

/"".'...'"'.C""""‘"""".'."'.0"'."."."'""""'Q'.""'.'Q"""'

Function PutHost() sends a single character to the port connected to the host
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workstation.

".""Q."'.'.‘.".."....'....'.'.‘.i.".Q't.Q.'.'.."‘QIt."..."'."...'...'/

void PutHost(char Source);

/’.'.""""'.'ﬂ".'t"".ii""""’.""'.'.""".ﬁ'ﬁi.'.'."""."'.t'.."'

Function GetConsole() returns a single character typed from the console.

BEERR A CER RN RN R RN ANN AN SRS OEROODY .'."i"'."t"""..."'Q..Q'.""""Q"../

char GetConsole();

/‘...".t".'.""'.'.."."'..'..'"'..".Q‘.'Qi"'.'i."'""".'i"."."ii'..

Function TerminateConsoleOutput() signals the console port that the interrupt
generated by the port has been serviced.

LA L2 21l (222222222 1l g AR A AR R AR AN SRR DA NN RNN AN AN RS DD /

void TerminateConsoleOutput();

LITI2 22222222222 222242222 2L 24 R AR R R R d il s il addsiiastdd)
i

Function TerminateConsolelntCycle() tells the console port to terminate all
unserviced interrupts.

".Q.'.."'Q...‘i"..0.."'.QQﬁ.Q""""""t'.'tt'...i..i“..""i'.""..."t/

void TerminateConsolelntCycle();

#endif

SERIAL.C

/ won T T T T T T T T T T T T e e . see

Author(s): Scott Book

Project: Yamabico Robot Control System

Date: December 8, 1993

Revised: March 2, 1994

File Name: serial.c

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file contains the VO routines necessary to interface
between the VMES8300 Quad Serial Port Board and the functions of
the VO System. The details of hardware setup and initialization
followed the examples in the VME8300 Quad Serial Port Board
Users Manual. The file is seperated into two section. The first
is the private section containing the encapsulated data and
tunctions. The secand section is the public section. This
section defines the interface routines.

WARNINGHIThis system must not be optimized when it is compiled. There are
places where it is necessary to write several values to the same
address in succession. If an optimization technique is used, the
compiler could discard all but the last write. This would cause
the serial board to be impioperly setup.
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#include “definitions.h”
#include “system.h”
#include “motorola.h”
#include “iosys.h”
#include “serial.h”

/'..'.'.'.'.Q"'...t.'.'QQ"..O'.Q'Q.'.'t.'.""'t‘..'"""t"."'.'."""."Q'

PRIVATE SECTION

The following section defines the encapsulated definitions, data structures
and prototypes used in the system.

"'..."'....".."t..'..""'.'."."'.'.".'"..""."""'.""'"."'.""'/

#define ARM 0x60
#define DISARM 0xc0
#define LOAD 0x40

#detine CONTROLREGISTER_92 0
#define CONTROLREGISTER_1 1
#define CONTF.OLREGISTER_2 2
#define CONTROLREGISTER_3 3
#define CONTROLREGISTER_4 4
#define CONTROLREGISTER_5 5
#define CONTROLREGISTER_6 6
#detine CONTROLREGISTER_7 7

VRELNNEER R RN ANC AT RN ARGt Odd AR AANES ke 22117

The following static function declarations are the prototypes for the
encapsulated functions.

---------- - L 2 L 2 L /

static void SetDataTransfer(LONG, LONG, LONG, LONG);
static void PutB(char Data, int MemoryAddress);

* *h e *hdw LA2 2122221222227

Function SetDataTransfer() establishes the communications for a given Pornt
by setting the appropriate bits in each of the seven control registers for

that Port. Details on the values sent to the command and data registers can
be found in the VME8300 Quad Serial Board Users Manual.

"..".'."'.'.""..."."'Q"""..".t"."."Q".".""""""'.""'"."/
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static void SetDataTransfer(LONG Port,
LONG HandShaking,
LONG TxIinterrupt,
LONG RxInterrupt)

BYTE* CmdRegister = (BYTE*)(Port + 2);

*CmdRegister = CONTROLREGISTER_O;
*CmdRegister = 0x18;

*CmdRegister = CONTROLREGISTER_2;
*CmdRegister = 0x00;

*CmdRegister = CONTROLREGISTER_4;
*CmdRegister = 0x44;

*CmdRegister = CONTROLREGISTER_1;
*CmdRegister = 0x04 | TxInterrupt | RxInterrupt;

*CmdRegister = CONTROLREGISTER_3;
*CmdRegister = Oxc1 | HandShaking;

*CmdRegister = CONTROLREGISTER_S;
*CmdRegister = 0xe8;

“CmdRegister = CONTROLREGISTER_S;
*CmdRegister = 0x00;

*CmdRegister = CONTROLREGISTER_7;
*CmdRegister = 0x00;

l hhdw Laaddddad d I 22T 22 a2 2t 2 a1y ys Ty

Function PutB() displays the character in Data on the console. It does

this by polling the command/status register to ensure that the transmitter

buffer is empty and ready to receive the character. The delays (the for loops)

are required to keep the data from overwhelming the port and becoming garbage.
NOTE:

The function required the ‘for loop as a timing delay. Without this delay,

some of the characters sent to the console were lost. The reason bet.ind this

data loss was not determined.

pounease * v /

static void PutB(char Data, int MemoryAddress){
BYTE* OutputData = (BYTE*)MemoryAddress;
BYTE® OutputCmd = (BYTE*)(MemoryAddress + 2);
const int DelayTime = 0x300;
int Wait;
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“OutputCmd = 0;
for(Wait=0; Wait < DelayTime; Wait++)

while((* OutputCmd & 0x04) == 0)

*OutputData = Data;

if(MemoryAddress == CONSOLE && Data == \n’){
for(Wait=0; Wait < DelayTime; Wait++)

while((*OutputCmd & 0x04) == 0)

*OutputData = \r’;
}
}

[reres snanae RPN IR AR RA R IRA TR SRR ARS .

PUBLIC SECTION

The following section defines the functions that provide access to the
serial sub-system.

void ResetSerialBoards(){
BYTE"* Timer;
int Wait;

Timer = (BYTE*)(TIMERADDRESS_0 + 2);
*Timer = Oxff;

Timer = (BYTE*)(TIMERADDRESS_1 + 2);
*Timer = Oxff;

for(Wait=0; Wait<0x100; Wait++)
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Function InitializeConsole() prepares the port that connects the onboard

console with the robot for /0. 1t also establishes the mechanism for
interrupt driven output.

""t"""..'i'."t'.t....‘...ﬁ"".'tt."'.iQ“i.'ii"t'..'.'i""".'..'ﬁ""/

void InitializeConsole(){
InitializePort{CONSOLE,9600,0,1,0);
SetConsolelntMechanism();

}

[ rene wew *esreasasEREN RO RS one

Function InitializeHost() sets up the port that connects the Unix work-
station with the robot to be used for object code and data transfers.

LA a4 CRERERARND RS AN SRS ENAAAIREREIAD /

void InitializeHost(){
InitializePort(HOST,19200,0,0,0);
}

/'"" PEREE A EE AR NN NS A A RN NN R RN AR E RN SRR N AW R AR N NSRS R SRR SR N ANE RS RS AN R N NGOG ON RO

Function initializePort() establishes the communications of the given Port
to the parameters given. Baud can be assigned standard communication rates

300, 1200, 2400, 4800, 9600, or 19200. HandShaking, TxInterrupt, and

RxInterrupt are used as ON/OFF flags. An assigned value of zero will disable

these options, while any non-zero value will enable them.

"'"'.'.QQ""".."..".'"'.'.'..'...'."..""......'."QQ'..'....".'.'.'Q'/

void InitializePort(LONG Port,
LONG Baud,
LONG HandShaking,
LONG TxInterrupt,
LONG RxInterrupt)

LONG taddr;
LONG cnum;
LONG Icount;
LONG hcount;

switch (Port){
case CONSOLE:
taddr = TIMERADDRESS_0;
cnum=1;
break;




case HOST:
taddr = TIMERADDRESS_0;
cnum = 2;
break;

case YSB1:
taddr = TIMERADDRESS_1;
cnum = 3;
break;

case YSB2:
taddr = TIMERADDRESS_1;
cnum = 4;
break;

default:
PutStr(“i_Port: illegal port™);
rexit();

}

switch (Baud){

case 300:
lcount = 0x01a0;
hcount = Ox01a1l;
break;

case 1200:
lcount = 0x0068;
hcount = 0x0068;
break;

case 2400:
lcount = 0x0034;
hcount = 0x0034;
break;

case 4800:
lcount = 0x001a;
hcount = 0x001a;
break;

case 9600:
lcount = 0x000d;
hcount = 0x000d;
break;

case 19200:
lcount = 0x0006;
hcount = 0x0007;
break;

default:
PutStr(“i_pont: bad baud rate™);
rexit();

}
SetTimer(taddr, cnum, 0x0b62, icount, hcount);
SetDataTransfer(Port,

(HandShaking ? 0x20 : 0),
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(TxInterrupt ? 0x02 : 0),
(RxInterrupt ? 0x10 : 0));

Function SetTimer() initializes one of the five counters located on the

serial board (with the corresponding TimerAddress) by assigning values to
command and data registers for that timer. Details on the values sent to the
command and data registers can be found in the VME8300 Quad Serial Board
Users Manual.

e SrresestrearrestItttaaRstTtaaRe seeesenarereresersian Y
void SetTimer(LONG TimerAddress,

LONG CounterNumber,

LONG ModeCmd,

LONG LoadCmd,

LONG HoldCmd)

BYTE* CmdRegister = (BYTE*)(TimerAddress + 2);
BYTE® DataRegister = (BYTE"*)(TimerAddress);
BYTE CounterSelectBit;

BYTE TimerCommand;

CounterSelectBit = 1;
CounterSelectBit = CounterSelectBit << (BYTE)(CounterNumber - 1);

TimerCommand = DISARM;
TimerCommand = TimerCommand | CounterSelectBit;
*CmdRegister = TimerCommand;

TimerCommand = LOAD;
TimerCommand = TimerCommand | CounterSelectBit;
*CmdRegister = TimerCommand;

*CmdRegister = (BYTE)CounterNumber;

*DataRegister = (BYTE)ModeCmd;
*DataRegister = (BYTE)(ModeCmd >> 8);
*DataRegister = (BYTE)LoadCmd;
‘DataRegister = (BYTE)(LoadCmd >> 8);
*DataRegister = (BYTE)HoldCmd;
“DataRegister = (BYTE){HoldCmd >> 8);

TimerCommand = ARM;
TimerCommand = TimerCommand | CounterSelectBit;
*CmdRegister = TimerCommand;




/.....".'...."."'.'QQ.'Q...""".‘.'".Q'.."'Q.Q"""Q...'Q...t."".'.'"'

Function SetLatch() passes to the specified latch the index value of the

vector table entry containing the interrupt handlers address to the serial
board. When an interrupt associated with the given latch is generated, the
VectorNumber is placed onto the address bus, indicating to the cpu the vector
table entry that contains the address of the interrupt handler.

'.".'..'QQ"t.'.""QQ't'.""t""'ﬁ'.'.."‘."'t."".t't.'0"..'."".".‘.'/

void SetLatch(LONG LatchAddress, BYTE VectorNumber){
*(BYTE")LatchAddress = VectorNumber;

}

/i.."Q...'Q"...."'.'."t.t'...ﬁi'Q.'.QQQ'...'..'.‘."Q"".'."..'.....i".'.ﬁ

Function PutConsole() initiates the printing of the single character Source
to the console.

"".'..Q."'."'....'t.'."."."..Q.."...Q."""."'..'."t.'.'..i".'i."t./

void PutConsole(char Data){
PutB(Data, CONSOLE);

}

/ aan o earneatee P e )

Function PutConsole() initiates the printing of the single character Source
to the host system.

"".'."."'..'..'.""Q'....""...'.'..'."'.."."."Q.""'.."....."'t..ﬁ/

void PutHost(char Data){
PutB(Data,HOST);
}

l’"".Q'..'".'"'......'.'.'.."'"."""..'.Q"".‘."Q.""".""".'.'."'

Function GetConsole() polls the command/status register, waiting until a
character from the console is placed in the receive buffer. it then returns
that character to the calling function.

'.'"..'"'"""'."'"""'.'.'.'"'Q."""'...Q"'.'..'...'."'C.t."".."./

char GetConsole(){
BYTE® InputAddress = (BYTE')CONSOLE;
BYTE® InputCmd = (BYTE*)(CONSOLE + 2);

*InputCmd = 0;
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while({*InputCmd & 0x01) == 0)

retum *(BYTE")InputAddress;
}

/.Q'Q'..Q.....".""."."it".""..'..".."'...t.."."..'."'Q".i'."".'.'

Function TerminateConsoleOutput() signals the console port that the interrupt
generated by the port has been serviced.

.'Q"'.'Q.'.'.'."."".....t'.ﬁ..'....'ﬁ'.'.Q.'.i.""t‘.t"'i.....'Q..'...."./

void TerminateConsoleOutput(){
*(BYTE")(CONSOLE + 2) = 0x28;

}

/'Q."."..'Q.".'.'.'.Q..'.*..".t'."'..'...'."Q'.'.Q'.'QQ.."'QQQ"'."t"..'

Function TerminateConsolelntCycle() tells the console port to terminate all
unserviced interrupts.

Q.""Q.'.'t..'."".."."'..'tt.ﬁ"."tt'tt".'t.t'i.i..t."ﬁ'.."."."‘.."'/

void TerminateConsoleintCycle(){
*(BYTE")(CONSOLE + 2) = 0x38;

}




APPENDIX B

IOSYS.H

[rrraressecearenen snen anken - e T T

Author(s): Scott Book

Project: Yamabico Robot Control System

Date: December 8, 1993

Revised: March 2, 1994

File Name: iosys.h

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file contains the prototypes/interface for the functions
available in the YO System module.

'..ﬁ"""."'..."'.'...'i'..'..'.t'.'..'......"'..".f..'..'....Q...Q..".'Q'/

#ifndef __ IOSYS_H
#define __IOSYS_H

#include “definitions.h”

/ sne onn teeene ove wee

Function loSyslinitialize() initializes the ports used for serial communications.

LA 4 ' L 224 CRNE BN EAR SR AN N OIARE OO A N RNd /

void loSysInitialize();

/ snsennne * sarnn * * » "o

Function loSysControl() is the work-horse routine for the output interrupt
handler.

void loSysControi();

* e * - * /

frees ressecasnnenee o o erene

Function PutStr() initiates the printing of the characters in the Source
string to the console.

----- * 211 (2122 -----/

void PutStr(char* Source);

/ "o we » rune * .

Function Putint sends the ascii representation of the parameter Number to
the console.

-------- *e CREVNSW L2 1] 121717 (221117 ] --'--/

void Putint(int Number);
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/"...Q...."..".'..".."'.'."""t‘.'i...'..'..'...Q‘...'.."'."".'.""..t

Function PutReal ser.ds the ascii representation of the parameter Number to

the console. The output is in exponential notation with a total of Places

digits after the decimal (up to a maximum of the constant MAX_REAL_PRECISION
found in the source file).

..."‘Q..."Q....."QQ...."..'Q.'.Q.."....'........'t..‘.Q..Qi"".“".t‘ﬁ'../

void PutReal(double Number, int Places);

/‘QQ....'Q.."t."""'Q'.'t"".'....O.Q."'.'.'t'...'.Q.tt"..t'..'."'.'tt".t

Function GetStr() copies the string of characters typed at the console (up to
Length characters) into the string pointed at by Source.

0'0""'"it't".""'".0.*.'.'.'t't'l.'Q"..'.tt.".Q‘..QQQQ".""'i"t""'./

void GetStr(char* Source, int Length);

/'.Q".'.'i'.0".’.'.".."'."'."ﬁ""..'.t"'.""".'QQ.""...'.'QQ'Q""".

Function Getint() reads a string from the console (up to MAX_INTEGER_DIGITS)
and converts the ascii representation into its integer value. All leading

white space (spaces and tabs) are discarded. The conversion stops at the

first character that can not be part of a legel integer value. All remaining
characters in the string are discarded. Strings where the first non white-

space character is not a digit will default to 0. Empty strings also default

to 0.

.'."""Q'..'.'.'."'"".‘.."...t'i."Q"Q"Q.".it'.".'."QQ'.'0."."'."./

int Getint();

/f."..'tt"Q.".'.'t..".'.'.t'...'...'.t.".'..t"..t'.'i'.""'."h"tt"'."'

Function GetReal() reads a string from the console (up to MAX_REAL_PRECISION)
and converts the ascii representation into its double value. All leading
white space (spaces and tabs) are discarded. The conversion stops at the
first character that can not be part of a legel double value. All remaining
characters in the string are discarded. Strings where the first non white-
space character is not a digit will default to 0.0. Empty strings also

default to 0.

‘.'."'..'."'Q'.Q.."'..."."..'.Q'Q'.'"'..'."'"Q"""'"..".."..'..""/

double GetReal();

#endif

10SYS.C
/"."""".""Q"'.".'.'.'"""."."'."'...'."'Q'.".'..QQ..'.."."""'

Author(s): Scott Book
Project: Yamabico Robot Contro! System
Date: December 8, 1993
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Revised: March 2, 1994

File Name: iosys.c

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file contains the routines and data structures needed to
provide /O capabilities to the rest of the subsystems in the
Yamabico project. This file contains two marked sections. The
first is the private section containing the encapsulated data
and functions. The second section is the public section. This
section defines the interface routines.

i"t'..."..'".'l"."".".""."O".Qi...'.."".'.""."..".'i't"...'."/

#include “definitions.h”
#include “convertutil.h”
#include “serial.h”

#include “iosys.h”

/."""Q"."'Q."..'Q"""..'."'..."'.".'.'."""'.""'...'.Q"..""Q.Q'

PRIVATE SECTION

The following section defines the encapsulated definitions and data
structures used in the system.

‘."""."'.".Q....'.Q"'...i'."t"".i"tt'..'ttt"'t."'."l'i""""'..../

#define BUFSIZE 1024

/.".""t""tt...'ﬁ.'..Q.".t...""'..‘..."Q...Q.."".ﬁ"".""'t".'.0.".

Structure and declaration of the output buffer. It is declared static to
prevent access from routines external to this module.
'0.t".'.‘!."tt"Q'.Q'..Q"..".Qt'.tt..t..".t'..'QQ'..Ot"Qtt'.'...'...ﬂ'ﬁ"'/
typedef struct{

int Head;

int Tail;

int Count;

char BuftefBUFSIZE];

} IOBUFFER,;

static IOBUFFER OutputBuf;

/..".""'.'."'.".".'"""..'Q"".".""..."..."""".'.....""'Q""'

PUBLIC SECTION
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The following section defines the functions that provide access to the
terminal system.

""'..'Q""t'.'QQQ.'"'.'...".t.."'t'ﬁ.."Q.i.'i'i.‘.0"'"'."".""""../

/‘......".""t...i"."'Q.'i'..'....Q.'.'.'.'t.Q...".'.'Q'.Q.'.""Q.'Q."'...

Function loSyslnitialize() initializes the ports used for serial communications.
The CONSOLE port is set for interrupt driven output, but direct memory (polled)
input. The output buffer is also initialized.

i'."'...'..."".""....."'.'"..".0."'.....".'.'..'....'.'Q"'...Q..'...'/

void loSys|nitialize(){
OutputBuf.Head = 0;
OutputBuf.Tail = 0;
OutputBuf.Count = 0;

/ reanssserasentn teesarane e *e e

Function loSysControl() controls the printing of characters in the output
buffer to the screen. It is called from the interrupt handling routine. It
operates by printing one character to the screen and then terminating the
interrupt. The act of printing a character to the screen generates ainoiher
interrupt to print the next character in the buffer. If the buffer is empty,

it sends a command to the port to stop the interrupt chain.

".'.'.'..Q'...".""..ﬁ'..'..'".'."'..'."'."...'..Qﬁ....."'QQ..'Q'.'..."/

void loSysControl(){

if(OutputBuf.Count > 0){
PutConsole(OutputBuf.BufterfOutputBuf.Tail));
OutputBut.Count--;
if(OutputBuf.Tail == BUFSIZE-1){

OutputBut.Tail = 0;
lelse
OutputBuf. Tail++;

}else
TerminateConsoleOutput();

TerminateConsolelntCycle();

}

/0".'."."."""'.".' L 441 LA RN NEC RSN RE L2 22

Function PutStr copies the string pointed to by Source into the output buftfer.
A critical region exists where the number of characters in the output buffer
is incremented. Therefore, the priority mask is set to prevent any interrupts
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from taking control of the CPU during its execution.

Q".t."'.Q.'".C'."Q.C,".'.’0........'...'...'i""‘.'".'.O.'Q'...'."..."../

void PutStr(char* Source){
while (*Source = \0')
OutputBuf.Count++;

OutputBuf.Buffer{OutputBuf.Head]) = *Source;
Source++;
if(OutputBuf.Head == BUFSIZE-1){
OutputBuf.Head = 0;
Jelse
OutputBuf.Head++;
}

I* Initiate an output interrupt by sending a null character to the console. */
PutConsole(\0');
}

[resasessscesectetessaiecssararesettstesintnesane
Function Putint converts the parameter Number tn ite 2scii representation and
sends the resulting string to the console by calling to PutStr.

.".."'"Q..t"..."..'.".."'."...'.'."...'.i".'ﬁ'"Q.'..'Q'.'.'...""."/

void Putint(int Numbaer){
char NumStr{20];

itoA(Number, NumStr);
PutStr(NumStr);

}

] srenene resaaReaNEIRRS . ahane o sesennn

Function PutReal converts the exponential notation of the parameter Number
into its ascii representation. It then sends the resulting string to the
console by calling PutStr.

*® *Ree t*hdhd Lol 2 L 1 *ha® /

void PutReal(double Number, int Places){
char NumStr{MAX_REAL_PRECISION+7];

if(Places<MAX_REAL_PRECISION){
RtoAE(Number,NumStr,Places+1);

Jelse{
RtoAE(Number,NumStr, MAX_REAL_PRECISION+1);

}
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PutStr(NumStr);
}

/“‘..."""'t'..""'.'."..'...""..."Qt".""""""."'t'...‘i‘."....i'

Function GetStr() copies the string of characters typed at the console (up to
Length characters) into the string pointed at by Source.

.Q't'ttt"'it"'..t"t'tttt'.t'.'ttt"'t't.'t""""'.'""it"""""""".'/

void GetStr(char* Source, int Length){
BYTE KeyStroke;
intl=-1;
int Size = Length - 1;

do{
KeyStroke = GetConsole();

switch(KeyStroke){
case \b":
if (| >= 0){
I--;
PutConsole(KeyStroke);
}
break;
default:
Source[++]] = KeyStroke;
PutConsole(KeyStroke);

}
while((Source[l] I= \r) && (I < Size));

Source(l] = \0’;
}

/'t""."' --------------------

Function Getint() reads a string from the console (up to MAX_INTEGER_DIGITS)
and convents the ascii representation into its integer value. All leading

white space (spaces and tabs) are discarded. The conversion stops at the

first character that can not be part of a legel integer value. All remaining
characters in the string are discarded. Strings where the first non white-

space character is not a digit will default to 0. Empty strings also default

to 0.

NENONENC OO RRODINNOONS L2 44 * .ty '..'.'.'."Q"...'Q/

int Getint(){
char NumStriMAX_INTEGER_DIGITS+1];
char® Temp = NumStr;
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GetStr(NumStr,MAX_INTEGER_DIGITS+1);

while((" Temp=="t") || (*Temp==""))
Temp++;

retum Atol{Temp);
}

/.0"'"....""Q'.."'Q.'.'."'.i".Q.'.i.'"".'Q“QQQ'Q'"....t."i."'.".".

Function GetReal() reads a string from the console (up to MAX_REAL_PRECISION)
and converts the ascii representation into its double value. All leading

white space (spaces and tabs) are discarded. The conversion stops at the

first character that can not be part of a legel double value. All remaining

characters in the string are discarded. Strings whre the first non white-

space character is not a digit will default to 0.0. Empty strings also

default to 0.

.""t..t"'.."'.'Q..t'."iﬁ‘.."'i..".."'.'tt'ti."'.tt't"."t'.'..'.ﬁ...'./

double GetReal(){
char NumStrfMAX_REAL_PRECISION+1];
char* Temp = NumStr;
GetStr(NumStr, MAX_REAL_PRECISION+1);

while((*Temp=="1t") || (*Temp==""))
Temp++;

retum AtoR(Temp);
}
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APPENDIX C

A. MOTION.H
/"..'.'."'.Qt"".."'.Q"Q'.'.Q.""..".'Q't.'.""..."."".'.'."""'0..'

Author(s): Scott Book

Project: Yamabico Robot Control System

Date: December 16, 1993

Revised: March 2, 1994

File Name: motion.h

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file contains the prototypes/interface for the functions
available in the Motion System module. The first two routines
are for system setup and control. The rest are MML's immediate
commands defined by the language.

'.'"'.'"i'.t..t".t‘.'i.t.".."."'Q.QQQ‘Q‘.t.'i'..."'."'.."‘..ﬁ.tt"t‘."/

#ifndef _ MOTION_H
#define __ MOTION_H

#include “definitions.h”

/".".'.'t..QQ."'Q.'QQQ"..‘.'.."""'.Q.."Q"'....'.'Q.'QQ."".Q‘Q‘Q"""'

Function MotionSysinitialize() initializes the motion subsystem by assigning

defauht values to the local variables and establishing the interrupt handling
mechanism.
L 2222222 222212222 2122422212222 22288222122 424324}] LA A AR A AL A4 4 A Al d ) * - /
void MotionSysinitialize();

/'"".'."..'t..'....".'Ot".."'..."'.'t..i"'...'.'.Q'.'.".."'.'.'.""'Q'

Function MotionSysControl() is the interrupt handier workhorse and is cailed

from the assembly interrupt handler shell.

L2221 142 yeee ""'.."'."'.'Q."'.."'....."'"""'.'.".'.."./

void MotionSysControl();

/'..'0"'.0......."'.'.0...""."'.'.0"'00.".'."Q""""Q...".'.."".Q".

The following declarations are prototypes for MML's immediate commands.

The command descriptions can be found in the MML Bible.

(2222222 L2 42 .0.'."".'..."0""'0"Oﬁﬂtﬁtﬁﬂiittﬁiﬁﬁtﬁﬁt'Q""'O/

void SetRobotConfiguration(CONFIGURATION NewContfiguration);

void GetRobotConfiguration(CONFIGURATION®* CumrentConfiguration);

void Stop();
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void SetLinearVelocity(double LinearVelocity);

void SetRotationalVelocity(double RotationalVelocity);

void SetLinearAcceleration(double LinearAcceleration);

void SetRotationalAcceleration{double RotationalAcceleration);
void SetSizeConstant(double SizeConstant);

double GetTotalDistance();

void SkipPathElement();

void HaltMotion();

void ResumeMotion();

CONFIGURATION SetinitialPosition();

void ReportRobotConfiguration(CONFIGURATION CurrentConfiguration);
void MotionOn();

void MotionOff();

#endif

MOTION.C
/'"""t"""'.."."..t."'....'""'0"'.""'Q.'..'."..‘.'Q.Q"".".".".

Author(s): Scott Book

Project: Yamabico Robot Control System

Date: December 16, 1993

Revised: March 2, 1994

File Name: motion.c

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file provides the routines and data structures needed to
provide the motion control capability for the robot. The file
is divided into three sections. The first is the private section
containing the encapsulated data and functions. The second
section is the control section. This section defines the
routines required for motion control. The third section is the
Immediate command section. This section defines MML's immediate
commands. The routines in these last two sections can be
accessed publicly.

Q"."'C'"".'.'.'"'."""""""..""'.."""'Q""'.'ﬁ".."""....'Q"/

#include “definitions.h”
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#include “system.h”
#include “iosys.h”
#include “wheels.h”
#include “math.h”
#include “math68881.h"
#include “motiontrace.h”
#inciude “motion.h”

/..'...."."".'C.""...'.'Q..."...‘.Q.'..'...t."...'.".."'.'.t"'..'."..'

PRIVATE SECTION

The following section defines the encapsulated detinitions, data structures
and prototypes used in the system.

".."Q.."..'."..00..."..'Q'.'Q.'Q.tt.'.'.'t.""".'"ti'"."..t..""""'/

#define SMALLERROR 0.0001
static int LoopTest;
static BOOLEAN Halted;

static VELOCITY HaltedVelocity;
static VELOCITY DesiredVelocity;
static VELOCITY Commanded;

static VELOCITY DesiredAcceleration;

static double TotalDistance;
static double DesiredSizeConstant;

static CONFIGURATION VehicleConfiguration;

/.QQ""...Q'."""'."'..".""."'.."'."'.'.‘.'.'..-'.'.""."Q....'.'.'Q'

The following static function declarations are the prototypes for the
encapsulated functions.
RO R RN ABER PR NSRS RR OGN NORES L2 A 22222 2222211222227 LA L4 /
static void UpdateConfiguration(double DeltaDistanceChanged,
double DeltaOrientation).
static VELOCITY GetCommandedVelocity(VELOCITY Desired,
VELOCITY Actual,
VELOCITY Commanded);
static double GetLinearVelocity(double Des:redVeIocrty
double ActualVelocity,
double LastCommandedVelocity);
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/0"".""..'.."'Q."".‘."'.."'Q"..'.."..'..'...".".'i..'.""."""'.'

Function UpdateConfiguration() calculates the robots current position based
on DeltaDistanceChanged (ds) and DeltaOrientation (dt).

....0..'".QQ.QQ.O.QQ'Q.Q'Q"'...'.'ii.""i'i'.'t"."""ﬁ.'t".t.ﬁ'..ﬁ"'t"'/

static void UpdateConfiguration(double DeltaDistanceChanged,
double DeltaOrientation){

double Distancelncrement = DeltaDistanceChanged;
double Orientationincrement = DeltaOrientation / 2;

DisableInterrupts();

if(fabs(DeltaOrientation) > SMALLERROR)
Distancelncrement *= sin{Orientationincrement) / Orientationincrement;

VehicleConfiguration.Position. XPosition += Distancelncrement *
cos(VehicleConfiguration.Orientation + Orientationincrement);
VehicleConfiguration.Position.YPosition += Distancelncrement *
sin(VehicleConfiguration.Orientation + Orientationincrement);
VehicleConfiguration.Orientation += DeltaOrientation;
if(fabs(DeltaDistanceChanged) > SMALLERROR){
VehicleConfiguration.Kappa = DeltaOrientation / DeltaDistanceChanged;
lelse{
VehicleConfiguration.Kappa = DeltaOrientation / SMALLERROR;

}

Enablelnterrupts();

/"...0.""0"..'."."'.'QQ..."tQ....Q.‘.'..'...'.".'.'QQQQ"i""..""'.h.'

Function GetCommandedVelocity() calculates the commanded velocity based on
the current velocity, the desired velocity, and the previous commanded
velocity.

QQ'"'0"."'.'..Q."".Q.OQ.'Q'Q'Q........""Q'Q"'Q'...Q'Q'Q'.".Q.'t""'.'t/

static VELOCITY GetCommandedVelocity(VELOCITY Desired,
VELOCITY Actual,
VELOCITY Commanded){
Commanded.Linear =
GetlinaarVelocity(Desired.Linear,Actual.Linear,Commanded.Linear);

I This statement is used since GetRotationalVelocity() is not */

r* currently defined. Otherwise, a statement similar to above */
I* would be used. 4/
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Commanded.Rotational = Desired.Rotational;

retum Commanded;

}

/".Q'.'."."'...'.Q't.."t'.""'t.'.".....Qt."..Q..."..'t"."tt'.'.'."ﬁ.'

Function GetlLinearVelocity() calculates the linear component of the commanded
velocity.

------ » - * -.".Q.".'Qt..ﬁ.'..'t"..QQ""'Q"Q"'/

static double Getl.inearVelocity(double DesiredVelocity,
double ActualVelocity,
double CommandedVelocity){
double VelocityChange;

VelocityChange = DesiredAcceleration.Linear * MOTION_CONTROL_CYCLE;
if(ActualVelocity < DesiredVelocity){
CommandedVelocity = Min(CommandedVelocity + VelocityChange, DesiredVelocity);

Jelse{
CommandedVelocity = Max(CommandedVelocity - VelocityChange, DesiredVelocity);

}

retum CommandedVelocity;

/"".Q".'Q"t'......'."i.."".."QQQQ"'..t.."""."".'.'....'.""'..."'

MOTION CONTROL SECTION

The following section defiries the tunctions that provide access to the
motion control system. These routines are public.

LAA S A AL 2 A2 222l ilds » ‘.'t.t.li'.'...'/

/'."Q..".'Q."t""'"""."'..'.ﬁ."'.O'...""".'..Q"iﬁ""."""."t..'.

Function MotionSysinitialize() initializes all of the private global variables

in this module to the desired default values. It then calls SetTimer to

program the 5th timer on serial board #1 (the second serial board) to generate
synchronous interrupts every 10ms. After the timer has been set up, the
interrupt handling routine is made available to the system by the call to
SetMotioninterruptHandler().

22 2% .."...Q"".'Q."""'."."'..".'."."."Q"."""."""."'.."'.0..'/

void MotionSysinitialize(){
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LoopTest = 0;
Halted = FALSE;
TotalDistance = 0.0;

DesiredVelocity.Linear = 0.0;
DesiredVelocity.Rotational = 0.0;
Commanded.Linear = 0.0;
Commanded.Rotational = 0.0;
DesiredAcceleration.Linear = 20.0;
DesiredAcceleration.Rotational = 0.5;
DesiredSizeConstant = 20.0;

VehicleConfiguration.Position. XPosition = 0.0;
VehicleConfiguration.Position.YPosition = 0.0;
VehicleConfiguration.Orientation = 0.0;
VehicleConfiguration.Kappa = 0.0;

" Initialize sub-systems. */

InitializeWheels();
TraceMotionSysinitialize(400); /* This sub-system only required if data */
/* logging is desired. Wi
SetMotionintMechanism();

}

/.""'.Q't."'.Q'.'"'.'Q"."'.'.t'..'.'.....'..'.'O"'Q".."."."..".'.'t..

Function MotionSysControl() is the interupt handler workhorse. It is called
from the assembly interrupt handier shell. Its first task is to update the
change in position and orientation through calis to the module responsible for
movement. It then uses this information in the motion control laws to derive
the commanded linear and rotational velocities required for this motion
control cycle. Finally, it passes these computed velocities back to the move-
ment module for execution.

'."".QQQ"'.""'.'..'.‘."'."'t't.'0'.'.'.it.'...ﬁ.'.....'..Q'Q'.'.'."Q.'../

void MotionSysControl(){
double OrientationChange;
double DistanceChanged;
VELOCITY Actual;

UpdateMovemeni();
DistanceChanged = GetDistanceTraveled();
OrientationChange = GetOrientationChange();

TotalDist~nce += DistanceChanged;
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UpdateConfiguration(DistanceChanged,OrientationChange);

Actual.Linear = DistanceChanged / MOTION_CONTROL_CYCLE;
Actual.Rotational = OrientationChange / MOTION_CONTROL_CYCLE;

" The logging statement can be moved, modified or deleted as desired. */
LogTimedMotion{Actual.Linear);

Commanded = GetCommandedVelocity(DesiredVelocity, Actual, Commanded);
SetMovement(Commanded.Linear,Commanded.Rotational);

" LoopTest used to control output from interrupt driven motion control */

I* system. LoopTest is assigned zero every 100 cycles (1 sec). */

if(LoopTest++ >= 99)
LoopTest = 0;

IMMEDIATE COMMAND SECTION

The following section defines the functions that provide access to MML's
immediate commands. The functionality of these routines can be found in the
language definition. These routines are also public.

"".""QQ'.'.""'."Q......"'..'."'."..'Q”"."'.""..'.Q.""'.'."i'.'/

void SetRobotConfiguration(CONFIGURATION NewConfiguration){
DisableInterrupts();

VehicleContiguration.Position.XPosition = NewConfiguration.Position.XPosition;
VehicleConfiguration.Position.YPosition = NewConfiguration.Position.YPosition;
VehicleConfiguration.Orientation = NewConfiguration.Orientation;
VehicleConfiguration.Kappa = NewConfiguration.Kappa;

Enablelnterrupts();

void GetRobotConfiguration(CONFIGURATION* CurmrentConfiguration){
Disableinterrupts();
*CurrentContfiguration = VehicleConfiguration;
Enablelnterrupts();

}
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void Stop(}{
WheelsDisable();
DesiredVelocity.Linear = 0.0;
DesiredVelocity.Rotational = 0.0;

}

void SetLinearVelocity(double LinearVelocity){
DesiredVelocity.Linear = LinearVelocity;
)

void SetRotationalVelocity(double RotationalVelocity){

DesiredVelocity.Rotational = RotationalVelocity;
1

void SetlLinearAcceleration(double LinearAcceleration){
DesiredAcceleration.Linear = LinearAcceleration;

}

void SetRotationalAcceleration(double RotationalAcceleration){
DesiredAcceleration.Rotational = RotationalAcceleration;

}

void SetSizeConstant(double SizeConstant){
DesiredSizeConstant = SizeConstant;
}

double GetTotalDistance(){
return TotalDistance;

}
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void SkipPathElement(){
PutStr("\ninside skip() stub”);

}

void HaltMotion(){
if(IHalted){
Halted = TRUE;
HaltedVelocity.Linear = DesiredVelocity.Linear;
HaltedVelocity.Rotational = DesiredVelocity.Rotational;
WheelsDisable();
}
}

void ResumeMotion(){
if(Halted){
Halted = FALSE;
DesiredVelocity.Linear = HaltedVelocity.Linear;
DesiredVelocity.Rotational = HaltedVelocity.Rotational;
WheelsEnable();
}
}

CONFIGURATION SetinitialPosition(){
CONFIGURATION NewConfiguration;

PutStr(“\nEnter the Starting X Position: “);
NewConfiguration.Position. XPosition = GetReal();
PutStr(“Enter the Starting Y Position: “);
NewConfiguration.Position.YPosition = GetReal();
PutStr(“Enter the Stanting Orientation: “);
NewConfiguration.Orientation = GetReal();
PutStr(“Enter the Starting Kappa Value: “);
NewConfiguration.Kappa = GetReal();

retum NewConfiguration;




void ReportRobotConfiguration(CONFIGURATION CurrentConfiguration){
PutStr(AnCurrent Robot Configuration:\n\tX =>\t\t");
PutReal(CurrentContiguration.Position. XPosition,4);
PutStr(An\tY =>\t\t");
PutReal(CurrentConfiguration.Position.YPosition,4);
PutStr(AntTheta =>\t");
PutReal(CurrentConfiguration.Orientation,4);
PutStr(*\n\tKappa =>\t");
PutReal(CurrentConfiguration.Kappa,4);

void MotionOn(){
WheelsEnable();

}

void MotionOff(){
WheeisDisable();
}

MOTIONTRACE.H

» L 4 LA (4241 MAAAA AL AL AL 2 da a2l ]l A A A Al 2224 222 ll] (2122211

Author(s): Scott Book

Project: Yamabico Robot Control System

Date: January 20, 1994

Revised: March 3, 1994

File Name: motiontrace.h

Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains the prototypes/interface for the functions

4
!

eh LA d A AL S e 224222221 22T 2 ) 22 2222422222224 L 222 --/

#itndef _ MOTIONTRACE_H
#define _ MOTIONTRACE_H

/ » L 2] ,oh L2 2 *w

Function TraceMotionSysinitialize() prepares the tracing system to log data.

it requests a block of dynamic memory to store the number of data points
requested by NumberOfPoints. No error checking for dynamic memory allocation
is performed by this function.
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....'.'."..i.'..'.'.."..‘..."""..""ﬁ'.""'.’."'.".'."Q""'.'.'.".'ﬁ/

void TraceMotionSysinitialize(int NumberOfPoints);

/""...'.'"'."......"""'.'.'.'..'t'..'0"".'..'..".."..."'..'.'.".'t"

Function MotionTraceEnable() enables data logging. Frequency is used by the
system'’s logging functions to determine the number of motion control cycles
between logged data. For example, if the frequency is 3, then data would be
logged on every third call to LogTimedMotion() or LogMotionData().

'Q't""""'Q"Q.t..l"""".t.t'i"'..i..it"...‘.'t.i.t"t'.".."Q."t..t.‘/

void MotionTraceEnable(int Frequency);

/'..""'.'..'O'..'Q.'..'".'.""'.'.'.."...'..".".".".'...'ﬁ""..'.'."‘. |

Function MotionTraceDisable() disables data logging.

"Q.."""ﬁ"'t""'ti'.."t".t'.ﬁ"ﬁ'.'."t.tt.‘"ttt""ti'.ﬁtiﬁi't".ﬁ'."‘/

void MotionTraceDisable();

[eaeeaens we ene I e oan

Function LogTimedMotion() logs Data against time in seconds, starting when
data logging is tumned on. This is based the assumption that the routine is
called every motion control cycle. The Frequency value given when logging is
enabled determines the number of number of LogTimedMotion() calls required
between recorded data.

.'t'.".".'."..'.i'i.Q'".'t.'tt".‘Q."."..0...'...Q'!Q".t."'.".t.""t"/

void LogTimedMotion(double Data);

/..QQ'".""'."".'.'..."...'Q.'."'.'..."'t'.'..'"Q."Q"‘."'Q'.'Q"Q"'Q'

Function LogMotionData() logs both parameters after every ‘Frequency’ calls.

.".l"..'.'.'t..""'".‘...'...t..'..'.i'.'.."'.‘ﬁ'..'.'t.ﬁ.."....".'.i""/

void LogMotionData(double XPiot, double YPlct);

/"."'...."Q"'Q.'."O‘"'.'""."."'.'.'.'.QQ'Q."..""..".'."'."'."Q'.

Function DownlLoadMotionData() prompts the user for a file name on the host
system to store the data. The file then opened, deleting ary previous
contents. The routine then transters character string representations of the
recorded data to the Unix host.

Q..'."'""""."."""i'Q'Q."Q'.i"'Q".".'.'Q'.'Q'""Q'.t.".'."".'.'./

void DownlLoadMotionData();

#endit
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D. MOTIONTRACE.C

/ sernantEen T e 2 L T

Author(s): Scott Book

Project: Yamabico Robot Control System

Date: January 20, 1994

Revised: March 3, 1994

File Name: motiontrace.c

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file contains the routines required to for the tracing
system. The file is seperated into two section. The first is
the private section containing the encapsulated data and
functions. The second section is the public section. This
section defines the interface routines.
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#include “definitions.h”
#include “memsys.h"
#include “convertutil.h”
#include “serial.h”
#include “iosys.h"
#include “motiontrace.h”

PRIVATE SECTION

The following section defines the encapsulated definitions, data structures
and prototypes used in the system.

(A2 2T A XT3 22 sl sl ety AR AERTOR I EARAORS * -w-/

typedef struct{
doubie XData;
double YData;

) SAMPLINGPOINT;

static SAMPLINGPOINT *MotionData;

static int MaxDataPoints;
static int NextPlot;

static int LoggingData;
static int CycleCounter;
static int LoggingFrequency;

l » * W * X2 22122222222 Y2 122 * e bad

The following static function declarations are the prototypes for the
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encapsulated functions.

..Q".""""Q'.'Q'.'.."..""'.'.".'.".'."..Q".'...'....'."""'.'.....'/

static void PutStrHost(char* Source);

/‘..."‘.'. ----- LA h L3221 el 2122 ali il ddd ) s » L2 whhRS

Function PutStrHost() is a simple routine that writes a character string to

the host environment. Writing non-character information to the host
environment may produce unexpected results. Other routines may be created to
write non-character data by converting the data to character strings prior

to being sent.

"'.QQ".'.'."'..-""'..""'.."".'QQ""'..'C"“'..'."".'."""Q."""/

static void PutStrHost(char® Source){
while (*Source |= \0'){

PutHost(*Source);
Source++;
}
}

l L4 *REW LA 22221222 222222222 222222 LA s dd il aad i lddtsil sl lss)

PUBLIC SECTION

The following section defines the functions that provide access to the
tracing sub-system.

L2 2 2] LA 22 2 e X421 2) L4 » /
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Function TraceMotionSyslInitialize() prepares the tracing system to log data.

it requests a block of dynamic memory to store the number of data points
requested by NumberOfPoints. No error checking for dynamic memory allocation
is performed by this function.

L2 2] - (24 2 2 L - 'Q..".."i'...C"O"..'.""""."..".Ql"'.'/

void TraceMotionSysinitialize(int NumberOfPoints){
NextPlot = 0;
LoggingData = FALSE;
CycleCounter = 0;
LoggingFrequency = 1;
if(NumberOfPoints > 0)
MaxDataPoints = NumberOfPoints;
else
MaxDataPoints = C;
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free((BYTE")MotionData);
MotionData = (SAMPLINGPOINT*)malloc(sizeof (SAMPLINGPOINT)"NumberOtPoints);

/ asssanen * " e * Iy e

Function MotionTraceEnable() enables data logging. Frequency is used by the
system’s logging functions to determine the number of motion control cycles
between logged data. For example, if the frequency is 3, then data would be
logged on every third call to LogTimedMotion() or LogMotionData().

--------------- 6‘.""""./

void MotionTraceEnable(int Frequency){
if(Frequency > 0)
LoggingFrequency = Frequency;
else
LoggingFrequency = 1;

LoggingData = TRUE;
}

/'...'."'....Q'QQ.Q....'"."t..'.'.'t'.'0.'."".'."."....'.Q.i.'.."'ﬁt't.‘.

Function MotionTraceDisable() disables data logging.

Q""'.'Q.'.'.'.."Q."'Q".'."""QQ..Q'.".'...Q.".'..'Q'..'.".."".Q'.'.'/

void MotionTraceDisable(){
LoagingData = FALSE;

}

/ seee *ensaces » -

Function LogTimedMotion() logs Data against time in seconds, starting when
data logging is turned on. This is based the assumption that the routine is
called every motion control cycle. The routine uses the variable CycleCounter
as a counter. When the value of CycleCounter reaches zero, data is logged and
the counter is reset to the LoggingFrequency set when logging was enabled. If
the value is greater than zero, the counter is decremented and logging is NOT
performed.

'."".'."'Q.'."Q'.'QQ.'.'.'.".""'QQ".'."'...""'ﬂ'0'..""'.""'.""'/

void LogTimedMotion(double Data){
if(LoygingData){
it((CycleCounter-- <= 0) && (NextPlot < MaxDataPoints)){
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MotionData[NextPlot]. XData = NextPlot * LoggingFrequency
* MOTION_CONTROL_CYCLE;

MotionData[NextPlot].YData = Data;

NextPlot++;

CycleCounter = LoggingFrequency;

/"..'"".'.".".-""."..'...'.tﬁ'.."'..’.Q"."".Q.'."Q".‘.""Q"'.."Q

Fucntion LogMotionData{) records both parameters when the CycleCounter is
zero. It then resets the counter to LoggingFrequency, assigned when logging
is enabled. If the value is greater than zero, the counter is decremented and
logging is NOT performed.

.'."Q"'..'.".".'.'..'..."'.'.'.'..".".Q".‘..'..."'....'..".'""..'..t/

void LogMotionData(double XPlot, double YPlot){
if(LoggingData){
it((CycleCounter-- <= 0} && {NextPioi < MaxDatarointsji{
MotionDatajNextPlot]. XData = XPlot;
MotionData[NextPlot].YData = YPlot;
NextPlot++;
CycleCounter = LoggingFrequency;
}
}
}

,.'.'i.."'....0.'&""..‘..."Q..'i'i...IQ.'.'QQ.Q'.QQ..'IQ.."'.""'.'"Qt'ﬁﬁ.

Function DownLoadMotionData() prompts the user for a file name on the host
system to store the data. The file then opened, deleting any previous
contents. The routine is dependent on the “ytof” call in the yamabico

account. The routine then transfers character string representations of the
recorded data to the Unix host. Afterwards, the function ensures that the

host file is closed.

"".Q"'.QQ'0..'.'.'..t....Q."."Q.'..Q.'0"."'Q"".'ttﬁ'..'..Q"".'Q.'.'Q'/

void DownlLoadMotionData(){
char FileName[35];
char DataString[MAX_REAL_PRECISIONJ;
int LoopCnurniter = MaxDataPoints;

MotionTraceDisable();
PutStr(\n\n\aReady to down load motion data. Connect the™);
PutStr(“\ncable and press any key to continue.”);

90




GetConsole();

PutStr(4a\n\nEnter the name of the Host file used to store the Motion Data”);
PutStr(An(WARNING: PREVIOUS FILE CONTENTS WILL BE DESTROYED)");
PutStr(“A\n\n\{File: “);

GetStr(FileName,35);

PutStrHost(“*ytof “);
PutStrHost(FileNamae);
PutStrHost(* w \n");

PutStr(\n\n\aReady to nown load data to Host computer. “);
PutStr(\nPress any key to begin “);
GetConsole();

PutStr(\n\nDown loading data...”);

for(LoopCounter=0; LoopCounter<MaxDataPoints; LoopCounter++){
PutStrHost(RtoAE (MotionData[LoopCounter]. XData,DataString,5));
PutStrHost(“t");
PutStrHost(RtoAE(MotionData[LoopCounter].YData,DataString,5));
PutStrrost(\n ;

)

PutHost(\4);
PutHost(\4");

PutStr(\aDown load complete™);

E. WHEELS.H

[resener sernestren seerneetanter e ST

Author(s): Scott Book

Project: Yamabico Robot Control System

Date: December 16, 1993

Revised: March 2, 1994

File Name: wheels.h

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file contains the prototypes to available wheel sub-system
routines. This set of prototypes defines the wheel sub-system
interface.
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#ifndef _ WHEELS_H
#define __WHEELS_H

#include “definitions.h”

91




#define MAXVELOCITY 60

/ sereraretennns . T T P T YT senene

Function InitializeWheels() initializes the wheels subsystem to its default
settings.

L2 4 » * *d L 1] hhe whked ot ddhdd /
void InitializeWheels();
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Function WheelsEnable() turns on the motors connected to the wheels.
------ > e (222222212 *haRRd L 2 1 243 ----------/
void WheelsEnable();
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Function WheelsDisable() turns off the motors connected to the wheels.
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void WheelsDisable();

/ . T TTewsm———— e * s

Function UpdateMovement() updates the distance traveled by both wheels.

'.'"Q."'.'.."..."".".Q""""'.'.".'..'..'.'."..."""'Q"""-"""'/

void UpdateMovement();
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Function GetDistanceTraveled() retums the linear distance the robot has
traveled between the last two calls to UpdateMovement().
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double GetDistanceTraveled();
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Function GetOrientationChange() returns the difference between the changes
in the distance of the left and right wheels between the last two calis to
UpdateMovement().
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double GetOrientationChange();

/ . "o onw cestetastRRRRR RIS

Function SetMovement() translates the commanded linear and rotational vel-
ocities into commanded velocities for each wheel.

» hed L4 oW s 424 LA /

void SetM..vement(double LinearVelocity, double RotationalVelocity);

#endif

92




F. WHEELS.C
/.'.".'.‘..'.."..Q'.".'Q"'...'i".".".'..."'..t'Q..'Q.."Q".‘.'QQ".'...'

Author(s): Scott Book

Project: Yamabico Robot Control System

Date: December 17, 1993

Revised: March 2, 1994

File Name: wheels.c

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file defines the wheel sub-system. It contains the hardware
intertace routines required for operation with the Dual Axis
Controller. The file is seperated into two section. The first
is the private section containing the encapsulated data and
functions. The second section is the public section. This
section defines the interface routines.

'.'"'.'.."".'.i.‘.‘""".Q"Q'l""‘....'i.Q...".".O...QQ.“'O"QQ‘Q.Q'..O/

#include “definitions.h”
#include “wheels.h”

/ seensseanaen CEENR R RN NI LR RRA AR B AR RN SR e *

PRIVATE SECTION

The following section defines the encapsulated definitions, data structures
and prototypes used in the system.

------- w * bRt badd it L) e * & w--/

#define RIGHT_DRIVE_PWM Oxtftff000
#define RIGHT_BRAKE _PWM Oxfffff002
#define LEFT_DRIVE_PWM 0xfffff004
#define LEFT_BRAKE_PWM Ox({ft{f006

#define MOTIONCONTROLADDRESS 0xfffff008
#define RIGHT_ENCODER_HIGH_WORD 0xitfff010
#define RIGHT_ENCODER_LOW_WORD Oxfffff012
#define LEFT_ENCODER_HIGH_WORD 0xfffff014
#define LEFT_ENCODER_LOW_WORD 0xfffff016

#define TREAD 52.4124€478129945756620
#define TREAD_R 53.40092 /* width of the robot (cm) when rotating. */

#define ENC_TO_DIST 0.00105570833333333333
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#define KPWB 10.0

I Assumed PWM range: 0..127. Set at 90 to allow testing on weak AC generator. */
I* Can be changed to 127 if generator not used or upgraded. */
#define PWMLIMIT 90

static int MotorOn;
static BOOLEAN Rotating;

static int RightEncoderValue;
static int LeftEncoderValue;

static int DeltaRightEncoderValue;
static int DeltaL.eftEncoderValue;

static double Rpwm;
static double Lpwm;
static WORD MotionControlWord;

/.QQ".".'.'......."'.'.."'.."Q'..'."t."'.'"Q‘Q'Q."'.."t"'.""'..'."'

The following static function declarations are tne prototypes for the

encapsulated functions.
Q'Qtt"'tt'.o't"'.ttttt't"t"t.'.."tttt't.'Qt't'QQQ.'.Qt.t.ttt't."t".'.t"tl
static int GetWheelEncoder(LONG HighWordAddress, LONG LowWordAddress);
static int EncoderDifference(int NewValue, int OldValue);
static int GetPwm(double CommandedVelocity, double ActualVelocity, double Pwm);
static double PwmlLookUp(double Velocity);
static void SetMotorControl(int Lpwm, int Rpwm, int MotionControlWord);

/ LT T T T T . ver

Function GetWheelEncoder() appends the contents of the shaft encoder low
word register to the contents of the high word register, forming a long
word. It then returns that value.

L 44 22222222122 - L2210 /

static int GetWheelEncoder(LONG HighWordAddress, LONG LowWordAddress){
LONG Wheel;

Wheel = *(WORD")HinchWordAddress;
Wheel = Wheel << 16;
Wheel += *(WORD*)LowWordAddress;

retum Wheel;
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Function EncoderDiffersnce() returns the difference between the new shaft
encoder position and the old shaft cncoder position. The shaft ancoder values
contain only 24 bits (0x000000-0xf!{fif). The routine adjusts for the trans-

ition from Oxffffff to 0x000000 and vice versa.
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static int EncoderDifference(int NewValue, int OldValue){
in Difference = NewValue - OldValue;

if(Difference < -0x800000){
Difference = Difference & 0xQOfftfff;
}else #(Difference >= 0x800000){
Difference = Difference | 0xff000000;

}

retum Difference;

}
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Function GetPwm() returns a new PWM value based on the desired velocity,
the actual velocity and the old PWM value.
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static int GetPwm(double CommandedVelocity, double ActualVelocity, double Pwm}){
double a =0.7;
int PwmTemn = PwmLookUp(CommandedVelocity) + KPWB *
(CommandedVelocity - ActualVelocity);

retum (a * PwmTemp + (1.0 - a) * Pwm);
}
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Function SetMotorControl() sends the PWM values to the motor control board
it the motors are turned on via a previous call to MotorEnable(). If the
motors are not turned on, then a command to free the motors is sent.

Q'.Q""""."'.'.'.....""."Q."....."""..Q'."'...'.'.""'.'.....Q"..'/

static void SetMotorControl(int Lowm, int Rpwm, int MotionControlWord){
if(MotorOn){
*(WORD*)LEFT_DRIVE_PWM = (WORD)Lpwm;
*(WORD*)RIGHT_DRIVE_PWM = (WORD)Rpwm;
*(WORD*)MOTIONCONTROLADDRESS = (WORD)MotionControlWord;
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Jelse{
*(WORD*)MOTIONCONTROLADDRESS = 0x0303;
}
)
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FUNCTION: pwm_lookup
PARAMETERS: vel (wheel velocity)
PURPOSE: Determines the estimated pwm ratio given
the desired wheel velocity as an input. (This table get from 7.9 KHZ
motor output curve).
RETURNS: pwm value based upon empirically determined velocity
vs pwm ratio curve.
CALLED BY: control()
CALLS: none
COMMENTS: 12 Jan 93 - Dave MacPherson,16 Sep 1993 changed by Ten-Min Lee
TASK: Level 4 interrupt

L1l *hh *dd * *hie A AL A L L4244 d s --/

static double PwmLookUp(double Velocity){
double v;
double pwm_value;

v = Velocity;

if (v==0.0)
pwm_value = 0.0;

glse # (v>=0.0 && v < 25.0)
pwm_value = (0.96 * v + 49.0);

else if (v >= 25.0 && v < 53.0)
pwm_value = (0.82 * (v - 25.0) + 73.0);

else if (v>=53.0 && v <= 65.0)
pwm_value = (2.0 * (v - 53.0) + 96.0);

else if (v > 65.0)
pwm_value = 127.0;

elseif (v<0.0&&v>=-25)
pwm_value = (1.2 * (v ) - 54.0);

elseif (v<-25 &&v>=-13.0)
pwm_value = (0.76 * (v + 2.5) - 57.0);

else it (v<-13.0 && v >= -20.0)
pwm_value = (0.43 * (v + 13.0) - 65.0);

else if (v < -20.0 && v >=-34.0)
pwm_value = (1.0 * (v + 20.0) - 68.0);

else if (v<-34.0 && v >= -41.0)
pwm_value = (0.7 * (v + 34.0) - 82.0);

else it (v < -41.0 && v >= -49.0)
pwm_value = (1.5 * (v + 41.0) - 87.0);

else if (v < -49.0 && v >= -62.0)
pwm_value = (1.1 * (v + 49.0) - 99.0);

———




else if (v < -62.0 && v >=-65.0)
pwm_value = (2.3 * (v + 62.0) - 113.0);
else
pwm_value = -127.0;

returm pwm_value;
} I end pwm_lookup */
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PUBLIC SECTION

The tollowing section defines the functions that provide access to the
wheel sub-system.
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Function InitializeWheels() initializes all of the private global vaiiables
in this module to the desired default values.
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void InitializeWheels(){
WheelsDisable{};
Rotating = FALSE;

Rpwm = 0.0;

Lpwm = 0.0;
MotionControlWord = 0;

DettaRightEncoderValue = 0;
DeltaleftEncoderValue = 0;
RightEncoderValue
GetWheelEncoder(RIGHT_ENCODER_HIGH_WORD,RIGHT_ENCODER_LOW_WORD);
LeftEncoderValue
GetWheelEncoder(LEFT_ENCODER_HIGH_WORD,LEFT_ENCODER_LOW_WORD);
}
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Function WheelsEnable() tums on the motors connected to the wheels.
This is done by setting the MotorOn flag, used by SetMotorControl(), to
a non-zero value.

VEROERANONNOVONRARE Rttt eatededd *o ¥ » L L --/

void WheelsEnable(){
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MotorOn = 1;
)

(2222122222222
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Function WheelsDisable() turns off the motors connected to the wheeis.
This is done by setting the MotorOn flag, used by SetMotorControl(), to
zero.

".""'.Q.'..'.Q'."..'..".'.."".'.'.'."."""...."‘Q.Q.'."O""'i'.""/

void WheelsDisable(){
MotorOn = 0;
}

I‘".'"‘Q'.Q""..'.".'...."i.'."i.‘""Q."Q.'.."..'.'l.'.ﬁ'."."ﬁ'.."."

Function UpdateMovement() updates the distance traveled by both wheels. it
does this by calculating the difterence between the current shaft encoder
values and the encoder values from the last time they were read. it also
stores the current encoder values which will be used as the last encoder
values when this routine is called again.

'."'."""'.'.'""Q.""..'.'Q.'...'."""Q'.."i..'.'.Q'"‘.'.Q'...'.Q.""/

void UpdateMovement(){
int Wheel;

Wheel
GetWheelEncoder{RIGHT_ENCODER_HIGH_WORD,RIGHT_ENCODER_LOW_WORD);
DeltaRightEncoderValue = EncoderDifference(Wheel,RightEncoderValue);
RightEncoderValue = Wheel;

I" The left motor is the mirror image of the right. Therefore the */
I* amount of change in the left encoder value needs to be negated */
" to show the proper direction of rotation. */
Wheel
GetWheelEncoder(LEFT_ENCODER_H!GH_WORD,! EFT_ENCODER_LOW_WORD);
Deltal.eftEncoderValue = - EncoderDifference(Wheel,LeftEncoderValue);
LeftEncoderValue = Wheel;

}

/'-- L4 TLEVRLEANAOR AR TROORAD L 22 0] SRNNERGSLLIRENIN "

Function GetDistanceTraveled() retumns the linear distance the robot has
traveled between the last two calls to UpdateMovement(). it makes the
calculations based on the measured center point between the two wheels by
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double GetDistanceTraveled(){
dc uble DistanceRight;
double Distancel eft;

DistanceRight = (double)DeltaRightEncoderValue * ENC_TO_DIST;
Distanceleft = (double)DeltaleftEncoderValue * ENC_TO_DIST;

retum ((DistanceRight + Distanceleft) / 2.0);
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Function GetOrientationChange() returns the difference between the changes

in the distance of the left and right wheels Letween the last two calls to
UpdateMovement(). it makes the calculations based on the center point between
the two wheels. MML 10 made a distinction based on whether the robot was
rotating or not when calculating the cer "er point between the wheels. This
distinction is included in this routine.

e *hee thdw Rt he » L4 L4204 -/

double GetOrientationChange(){
double DistanceRight;
double Distanceleft;
double OrientationChange;

DistanceRight = (double)DeltaRightEncoderValue * ENC_TO_DIST;
Distanceleft = (double)DeltaleftEncoderValue * ENC_TO_DIST;

if(Rotating){

OrientationChange = (DistanceRight - Distanceleft) / TREAD_R,;
Jelse{

OrientationChange = (DistanceRight - Distanceleft) / 1 READ;
}

retum OrientationChange;

/ . oae ssens

Function SetMovemant() transiates the commanded linear and rotational vel-
ocities into commanded velocities for each wheel. It then calculates the PWM
values for each wheel and calls SetMotorControl() to execute PWM commands.
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void SetMovement(doubie LinearVelocity, double RotationalVelocity){
double RightWheelVelocity;
double LeftWheelVelocity;
double CommandRightVelacity;
double CommandL.eftVelocity;
double Tread2;
int RpwmTemp;
int LpwmTemp;

DeltaRightEncodervalue * ENC_TO_DIST /

RightWheelVelocity
MOTION_CONTROL_CYCLE;

LeftWheelVelocity
MOTION_CONTROL_CYCLE;

DeltaleftEncoderVaiue  * ENC_TO_DIST ¢/

if(Rotating){

Tread2 = 0.5 * TREAD_R,;
lelse{

TreadZ = 0.5 * TREAD;

}

CommandLeftVelocity = LinearVelocity - (Tread2 * RotationalVelocity);
CommandRightVelocity = LinearVelocity + (Tread2 * RotationalVelocity);

LpwmTemp = GetPwm(CommandLeftVelocity, LeftWheelVelocity, Lpwm),
RpwmTemp = GetPwm(Com. randRiginVelocity, RightWheelVelocity, Rpwm);

Lpwm = LpwmTemp;
Rpwm = RpwmTemp;

MotionControlWord = (MotionControlWord & 0xf0f0) |
((LpwmTemp>0)?71:2)|
((RpwmTemp > 0) ? 0x10C : 0x200);

if{RpwmTemp > FWMLIMIT){
RpwmTemp = PWMLIMIT;

jelse if(RpwmTemp < -PWMLIMIT){
RpwmTemp = -PWMLIMIT;

}

if(LpwmTemp > PWMLIMIT){
Lpwm:Temp = PWMLIMIT;

Jelse #(Lpwmfemp < -PWMLIMIT){
LpwmTemp = -PWMLIMIT;

}

SetMotorControl(LpwmTemp, RpwmTemp, MotionControlWord);
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APPENDIX D

A. USERH
/.""|.""."'.".."'."Q'Q'"'Q..Q..‘.'.Q.."..""'.Q'..""'.".".'."..".

Author(s): Scott Book

Project: Yamabico Robot Control System

Date: December 8, 1993

Revised: March 4, 1994

File Name: user.h

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file contains prototype for USER(). This is not required
by the current implementation of the new MML system since user
and kemel are two seperate object modules that are loaded at
seperate locations. However, if the modules are combined in the
future, main() can call USER() directly instead of user(). The
prototype would then be required.

ERNNOECRANS LG ANERRNNPONOOON "Q""'."‘Q.'..'QQ'."...Q.'..t"’.'.'t'.'t""."'/

#itndef __ USER_H

#define _ USER_H

/‘""'Q.'.".'."'.Q.Q..'.'.'".'.'...Q."‘...'."."'.."t."'.'.'...".."Q.‘.

Function USER() is the user system program that receives control from main()
after the robot's sub-systems have been initialized.
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void USER();

#endi

B. USER.C

Author(s): Scott Book

Project: Yamabico Robot Control System

Date: December 8, 1993

Revised: March 4, 1994

File Name: user.c

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file contains a sample user program that can be used with
the new MML system createa using ANSI C. The purpose of this
program is to provide an interactive menu system to control the
robot using immediate commands only. it was also used to test
the implementation of the immediate commands. Since the user
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module is loaded at 0x334000, USER() must be the first function
defined.

."..".Q.Q".t".'."'Q'.'I.".Q"'."Q.""""..".""."'.Q..""'."."'../

#include “definitions.h”
#include “iosys.h”
#include “serial.h™
#include “motion.h”
#include “motiontrace.h”
#include “compatability.h”
#include “user.h”

#define ESC Ox1b

/'0"".t'i'.Q.'Q'QQ'."""'Q.."..'Q'."'QQ..."0'.""..".""...Q'..."..'Q.

The following section presents the prototypes for the encapsulated function(s)
in this module.

""'.'i..'..'..'..""'.'..""."..'Q".."'Q."‘""Q'..i.."".'.'.""t"'./

static void body();

/" " seneen - . sssnsenene reeece

PUBLIC SECTION

The following section defines the publicly accessible USER() routine that
is called from main().
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Function USERY() is essentially a shell routine that calls body(). The reason
for this approach is to prevent the compiler from changing the starting
address ot USER() by storing variables and/or strings before the routine.

LA A A d a2 dd A4 Al Al At ddd22 122212221112 211227 3] » e -/
void USER(){
body();
}
/'- - 12223 t 222231422 L 1 ] e E2 23 L 1 211217 -» e 211227
PRIVATE SECTION

The following section defines the encapsulated function definition(s) used
within this modute.
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/"'Q"."'...'.'.Q."'.'"t..'...'..".".Q'Q.‘Q."""".'.'...".'t"""'..'.

Function body() is the work horse routine of this user program. it provides

the menu system to interact with MML’s immediate commands. The routine
purposely uses the older MML-10 commad calls in order to demonstrate use of
the compatability macros defined in compatability.h

"‘Q.QQQ'Q'G..h&t.'..'t"t.t.""..".Q'i""tQtt.'.t."t""..."'.'.".'Qt't"/

static void body(){
int wait;
char KeyBoardHit;
CONFIGURATION VehicleConfiguration;

KeyBoardHit = 0;
motion_on();

do{
PutStr(“\nHit: ESC to Terminate Program”);
PutStr(\n  C to Change Robot's Configuration “);
PutStr(\n R to Report Robot's Current Configuration “);
PutStr(\n v to Change Linear Velocity™);
PutStr(An  r to Change Rotational Velocity “);
PutStr(A\n  a to Change Linear Acceleration™);
PutStr(\n b to Change Rotational Acceleration “);
PutStr(An S to Change the Size Constant “);
PutStr("n s to Skip the next Sequential Instruction “);
PutStr('\n  h to Halt the Robot “);
PutStr(\n ¢ to Resume the Robot “);
KeyBoardHit = GetConsole();
PutConsole(KeyBoardHit);

switch(KeyBoardHit){

case ESC:
stop0();
PutStr("\n\nThe Total Distance Traveled is: “);
PutReal(path_length(),4);
break;

case ‘C"
cst_rob0{get_initial_positicn(});
break;

case ‘R"
get_rob0(&VehicleConfiguration);
report_configuration(VehicleConfiguration);
break;

case V"
PutStr(\a\m\nEnter Desired Linear Velocity: “);
speed0(GetReal());
MotionTraceEnable(3); /* Log the data every 3 Motion Control Cycles. */
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break;
case r:
PutStr(“\a\n\nEnter Desired Rotational Velocity: “);
r_speed0(GetReal());
break;
case ‘a’
PutStr(“\a\n\nEnter Desired Linear Acceleration: “);
acc0(GetReal());
break;
case ‘b
PutStr(\a\m\nEnter Desired Rotational Acceleration: “);
r_acc0(GetReal());
break;
case ‘S’
PutStr(\a\n\nEnter Desired Size Constant: *);
size_const(GetReal());
break;
case's’
skip();
break;
case ‘h’:
halt();
break;
case'c’:
resume();
break;
defauit:
break;

}
}while(KeyBoardHit 1= ESC);

DownLoadMotionData();
PutStr(An\nProgram Terminated.\a\n\n");
motion_off();

for(wait=0; wait<0x1000; wait++)

. COMPATABILITY.H

TENNEROEENLRRNILOARIODRNDSN ENRENINONSNBEISONS

Author(s): Scott Book
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Project:  Yamabico Robot Control System

Date: January 18, 1994

Revised: March 4, 1994

File Name: compatability.h

Environment: GCC ANSI C compiler for the motorola 68020 processor

Description: This file provides macros to convert old MML-10 immediate
command calls into the new command calls. This allows user
programs created for MML-10 to be used on the new system.

Qt"'it.".'i'."""QQ"."""'.C'.'it.ii..'....QQtt""."'Q'.'.i"."tt’i"'/

#ifndet _ COMPATABILITY_H
#define __ COMPATABILITY_H

#include “definitions.h”
#include “motion.h”

#define set_rob0(P) SetRobotConfiguration(P)
#define get_rob0(P) GetRobotConfiguration(P)
#define stop0() Stop()

#define speed0(P) SetLinearVelocity(P)
#detine r_speed0(P) SetRotationalVelocity(P)
#define accO(P) SetLinearAcceleration(P)
#define r_acc0(P) SetRotationalAcceleration(P)
#define size_const(P) SetSizeConstant(P)
#define path_length() GetTotalDistance()
#define skip() SkipPathElement()

#define halt() HaltMotion()

#define resume() ResumeMotion()

#detine get_initial_position{) SetinitialPosition()
#define report_configuration(P) ReportRobotConfiguration(P)
#define motion_on() MotionOn()

#define motion_off() MotionOff()
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#endit
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